Endogenous Coalition of Intellectual Properties: A Three-Patent Story

Chen Qu Department of Economics, BI Norwegian Business School, Norway

24 April, 2015

Background

- Cooperation among intellectual property owners (e.g., patent pools) is often observed in a variety of industries.
- Patent pool: an agreement by multiple patentholders to license a portfolio of patents as a package to outsiders (or to share intellectual property among themselves) (*New Palgrave*)
- In 2001, sales of devices wholly or partly based on pooled patents exceeded \$100 billion.
- Third Generation Patent Platform Partnership (3G3P): 5 independent PlatformCos (platform companies), each consisting of patents essential to one 3G radio interface technology.

Research questions

- The purpose of this paper is to investigate the endogenous coalition formation among intellectual property owners in a 3-patent setting:
 - fragmented pool structure (R) R (R) (R)
 - incomplete pool structure (R)
 - complete pool ® (R) (R)
- 4 questions:
 - (Q1) What are the profits of patent pools in equilibrium under different pool structures?
 - (Q2) Under what circumstances is the (in)complete pool the stable pool structure?
 - (Q3) Is a market structure of fragmented patents a possible outcome?
 - (Q4) What is the welfare effect of a stable pool structure?

Theoretical resources and contributions

- Lerner & Tirole (2004, AER): a tractable model of patent pools.
 - Non-essential cumulative patents (\surd
 - Stand-alone patents vs. one complete pool ($\times)$
- Ray & Vohra (1997, JET): equilibrium binding agreements (EBA).
 - The protocol of endogenous pool formation.
 - Incomplete pool may form.
- Contributions:
 - A full picture of endogenous coalitional behaviors of IP owners; particularly, the relationship between pool structure outcome and value accumulation from increasing patents.
 - An application of theory of coalition formation (in a symmetric and asymmetric case).
- Other related literature: Quint (2014), Aoki & Nagaoka (2006), Brenner (2009)

- The model and preliminaries
- Building block: equilibrium profits under different pool structures (Q1)
- Stable pool structure: symmetric profits (Q2, Q4)
- Stable pool structure: asymmetric profits (Q2, Q3, Q4)
- Discussions
 - Alternative protocol: sequential bargaining
 - In-patent case (marginal contribution, homogeneous licensees)

Timeline of game

- Stage 1. n owners form a pool structure C (a partition of n patents).
- *Stage 2*. Prices are set by simultaneous Nash-like play by the pools. The profit is divided equally within a pool. Asymmetric equilibria are allowed.

Licensees distributed over $[\overline{\theta} - \Delta, \overline{\theta}]$. Licensee θ 's valuation: $\theta + V(k)$, k: # of patents θ access, $V(k) \nearrow$ in k.

- Stage 3. Each licensee selects the basket B s.t. $\max_{B \subseteq C} \{ V (\sharp B) - \mathbf{P}_B \}$. (not user-specific)
- Stage 4. Licensee θ adopts the technology iff θ + V(\$B\$) ≥ P_B. (user-specific)

Lerner and Tirole (2004):

- All pools are in the equilibrium basket.
- In equilibrium each pool charges min {competition margin, demand margin}.
 - Competition margin: the highest price a pool can charge without being excluded from the basket.
 - Demand margin: the optimal price in the absence of co. margin.
- ∃ some pool, s.t. all bigger pools charge same de. margin, and the rest charge co. margin.

3-patent case: profits

3 feasible pool structures:

 $\{1, 1, 1\}$ (fragmented); $\{1, 2\}$ (incomplete); $\{3\}$ (complete).

- Notations: $v_1 \equiv V(1) + \overline{\theta}$, $v_2 \equiv V(2) + \overline{\theta}$ and $v_3 \equiv V(3) + \overline{\theta}$.
- Assume licensees uniformly distributed.

• Per-owner profit
$$\pi(\{3\}) = \frac{1}{12}v_3^2$$
.

• Prop 1.

3-patent case: profits cont.

• Prop 2.

$$\begin{array}{c|c} & \pi \left(\{1,1,1\}\right) \\ \hline (\mathsf{d+f}) & \left(\frac{1}{16}v_3^2\right)_3 \\ (\mathsf{concavity+g}) & \left((3v_2 - 2v_3)\left(v_3 - v_2\right)\right)_3 \\ (\mathsf{e+convexity}) & \left(v_1 - z\right)\left(z, z, v_3 - v_1 - z\right) \text{ with } z \in \left[v_2 - v_1, \frac{v_3 - v_1}{2}\right] \end{array}$$

$$\begin{array}{c|c} (d) \\ (e) \\ \hline (e) \\ v_3 \leq 2v_1 \\ \hline (g) \\ v_3 \leq \frac{4}{3}v_2 \\ v_3 \leq \frac{4}{3}v_2 \\ \hline (convexity) \\ v_3 \geq 2v_2 - v_1 \\ \hline (convexity) \\ v_3 \geq 2v_2 - v_1 \end{array}$$

In (e+convexity),

- z: degree of symmetry. When $z = \frac{v_3 v_1}{2}$, symmetric.
- Infinite number of asymmetric equilibria: owner 3 earns high profit and the other two the same low profit.

Equilibrium binding agreements (symmetric profits)

- A pool structure is called an *equilibrium pool structure (EPS)* if, under this structure, no owners, individually or as a group, have incentive to break away from the current pool by EBA:
 - Only internal deviations of a subset of an existing pool are allowed: $\{3\} \rightarrow \{1,2\} \rightarrow \{1,1,1\};$
 - $\textbf{Owners are farsighted: } \{3\} \rightarrow \{1,2\} \xrightarrow{?} \{1,1,1\};$
- The coarsest EPS is the stable pool structure.
- Example: (a+d+f) $\frac{\pi \left(\{3\}\right) \quad \pi \left(\{1,2\}\right) \quad \pi \left(\{1,1,1\}\right)}{\frac{1}{12} v_3^2 \quad \left(\frac{1}{9} v_3^2, \frac{1}{18} v_3^2\right) \quad \left(\frac{1}{16} v_3^2\right)_3}$
 - $\{1, 1, 1\}$ is EPS; $\{1, 2\}$ is not EPS ($\{1, 1, 1\}$ blocks $\{1, 2\}$);
 - {3}, comparing π ({3}) with π ({1,1,1}), is (coarsest, stable) EPS.
- A simple algorithm:
 - *Step I*: Is {1, 2} EPS?
 - If NO, $\hookrightarrow Step II: \{3\}$ is stable PS. Done.
 - If YES, \hookrightarrow Step III: Is {3} EPS? (Compare $\pi({3})$ with $\pi({1,2})$)

Stable pool structure (symmetric profits)

• Props 3-5.

stable PS:	{3}?	{1,2}?	{1,2} EPS?	Who defects?	
a+d+f	Always		Never		
b+d+f	$v_3 > x_1$	$v_3 \leq x_1$	$v_3 \leq x_1$	$\{1\}$	
b+concavity+g	$v_3 \in [x_2, x_3]$	$v_3 \notin [x_2, x_3]$	Always	$\{2\} [/] \{1\}$	
c+concavity+g	$v_3 \notin (x_4, x_5)$	$v_3 \in (x_4, x_5)$	Always	/ ({2}) /	
a/c+e+convexity	Always		Never		
b+e+convexity	<i>v</i> ₃ ∉(<i>x</i> ₃ , <i>x</i> ₆]	$v_3 \in (x_3, x_6]$	$v_3 \leq x_6$	/ ({1}]	

$$\begin{split} x_1 &\equiv \sqrt{2}v_2. \\ x_2 &\equiv \sqrt{\frac{3}{2}}v_2; \ x_3 \equiv \left(3 - \sqrt{3}\right)v_2. \\ x_4 \left(x_5\right) &\equiv \frac{1}{7} \left(6v_1 + 3v_2 - (+)\sqrt{3\delta}\right), \ \delta \equiv 3v_2^2 - 2v_1v_2 - 2v_1^2 \ \text{if} \ \delta \geq 0. \\ x_6 &\equiv 2v_1 - \frac{\sqrt{2}}{2}\sqrt{2v_1^2 - v_2^2}, \ \text{if} \ 2v_1^2 - v_2^2 > 0. \end{split}$$

Stable pool structure (symmetric profits) cont.

stable PS:	{3}?	{1,2}?	{1,2} EPS?	Who defects?	
a+d+f	Always		Never		
b+d+f	$v_3 > x_1$	$v_3 \leq x_1$	$v_3 \leq x_1$	$\{1\}$	
b+concavity+g	$v_3 \in [x_2, x_3]$	<i>v</i> ₃ ∉ [<i>x</i> ₂ , <i>x</i> ₃]	Always	$\{2\} [/] \{1\}$	
c+concavity+g	$v_3 \notin (x_4, x_5)$	$v_3 \in (x_4, x_5)$	Always	/ ({2}) /	
a/c+e+convexity	Always		Never		
b+e+convexity	<i>v</i> ₃ ∉(<i>x</i> ₃ , <i>x</i> ₆]	$v_3 \in (x_3, x_6]$	$v_3 \leq x_6$	/ ({1}]	

- Eg. (a+d+f) $V(1) \approx V(2) \approx 0$, $V(3) \gg 0 \Rightarrow$ stable {3}.
- Eg. (b+d+f) (linear) V(k) = Ak, A constant, k = 1, 2, 3. $v_3 > x_1 \Rightarrow$ stable {3}.
- Eg. (b+concavity+g) $V(1) \approx 0$, $V(2) \approx V(3) \gg 0$. $v_3 < x_2 \Rightarrow$ stable {1, 2}.
- Eg. (c+e+convexity) $V(1) \approx V(2) \approx V(3) \gg 0 \Rightarrow$ stable {3}.
- **Prop 6.** Stable PS is $\{3\}$ if $v_3 \ge \frac{3}{2}v_2$ or $v_2 < \frac{\sqrt{7+1}}{3}v_1$. (The latter is irrespective of v_3 .)

Welfare analysis (symmetric profits)

 We say the stable PS *increases welfare* if the total price under it < that under {1, 1, 1}.

• Prop 7.

	When the coarsest EPS ↗ welfare?
a/b+d+f	always
b+concavity+g	$v_3 \ge \sqrt{3/2}v_2$
c+concavity+g	always \searrow welfare (except if $v_2 > \frac{5}{4}v_1$ and $v_3 \ge x_5$)
a/b+e+convexity	always
c+e+convexity	$v_3 > \frac{3}{2}v_1$

Except (c+concavity+g) with restrictive v_3 , the stable PS (almost) always increases welfare.

Stable pool structure (asymmetric profits)

• 4 feasible PSs:
$$\{aaA\} \rightarrow \begin{cases} a, aA \\ \{A, aa \end{cases} \rightarrow \{a, a, A\}.$$

- Subtleties arise of the algorithm of finding the stable PS.
- Prop 8. (Polar asym.) When z = v₂ v₁, {A, aa} (always EPS) can be stable in all the cases with (e+convexity).
 ⇒ {a, a, A} is never stable.
 (In (c+e+convexity), {a, a, A} is never stable for any z.)
- Can $\{a, a, A\}$ be stable? YES!
- **Prop 9.** In (a+e+convexity), $\exists (\underline{z}, \overline{z}) \subset [v_2 v_1, \frac{v_3 v_1}{2}]$ s.t.

Ζ	$[v_2 - v_1, \underline{z}]$	$(\underline{z}, \overline{z})$	$\left[\overline{z}, \frac{v_3-v_1}{2}\right]$
stable PS	$\{A,aa\}$	$\{a,a,A\}$	$\{aaA\}$

- Modest asymmetry \Rightarrow finest market structure. Why?
 - High asymmetry $\Rightarrow \pi(a|A,aa) < \pi(a|a,a,A)$
 - High symmetry $\Rightarrow \pi(A|aaA) < \pi(A|a, a, A)$

Welfare implication (asymmetric profits)

• By Prop 9, in (a+e+convexity),

Ζ	$[v_2 - v_1, \underline{z}]$	$(\underline{z}, \overline{z})$	$\left[\overline{z}, \frac{v_3 - v_1}{2}\right]$
stable PS	$\{A, aa\}$	{a, a, A}	{aaA}
total price	$\frac{2}{3}V_3$	$v_3 - v_1 + z$	$\frac{1}{2}V_{3}$

• **Prop 10**. In (a+e+convexity), when $v_3 < \frac{18}{11}v_1$, $\exists z^* \in (\underline{z}, \overline{z})$ s.t. $z \in (\underline{z}, z^*)$ leads to a lower total price than the one charged by $\{aaA\}$; when $v_3 \geq \frac{18}{11}v_1$, any $z \in (\underline{z}, \overline{z})$ leads to a higher total price.

Discussions

- Alternative protocol: infinite-horizon unanimity bargaining (⇔ sequential game of choosing pool size)
- 3 symmetric patents: stable PS = SPE of game above.
- Marginal contribution of Δk patents to a size-k pool: $w(k, \Delta k) \equiv V(k) - V(k - \Delta k).$
- **Prop A2**. Consider equilibrium **p**. Then co. margin_i = $w(n, n_i)$ iff

$$C \setminus n_i \in \arg \max_{J \subseteq C \setminus n_i} \left\{ V \left(\sharp J \right) - \mathbf{P}_J \right\}.$$

This holds if $V(\cdot)$ satisfies $w(n, \Delta k) \le w(k, \Delta k)$ for any $k \le n$ and any $\Delta k < k$. (weaker than concavity of $V(\cdot)$). **Eg**. V(1) = 1, V(2) = 2, V(3) = 5, V(4) = 6.

Discussions cont.

• Homogeneous licensees (same θ), no externalities (using Prop.12) \Rightarrow Per-owner profit of a size-*t* pool is $\frac{w(n,t)}{t}$.

	t	1	2	3	4	5	6
• Eg.	V(t)	11.5	14	36	46	53	54
	w(n,t)/t	1	4	6	10	8.5	9

Multiple stable PS with no stand-alone patents: $\{2,4\}$, $\{3,3\}$. (EPS $\{1,1,4\}$ blocks $\{1,5\}$. $\{2,4\}$ blocks $\{6\}$.)

- Possible refinement \Rightarrow {4, 2} the only outcome:
 - The coarsest EPS should block some coarser structure;
 - Alternative protocol of sequential bargaining.

Conclusions

- Varieties of equilibrium profits under different structures.
- NO straightforward prediction on stable PS!
- Symmetric profits: either complete pool or incomplete PS is stable.
- Asymmetric profits: fragmented PS can be stable.
- Stable PS tends to increase welfare with large V(3); fragmented PS may increase welfare.
- Future research:
 - Up-front fees, per-unit royalties, and combinations of the two.
 - Weak" patent: patent litigation, spillovers.
 - Solution of *n*-patent case.

Thank you ^O^

э.

・ロト ・日下 ・ 日下