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Abstract

We investigate the endogenous coalition formation among intellectual property owners in a

three-patent setting, and answer the following questions: (1) What are the profits of patent pools

in equilibrium under different pool structures? (2) Under what circumstances is the complete pool

or incomplete pool the stable pool structure? (3) Is a market structure of fragmented patents a

possible outcome? (4) What is the welfare effect of a stable pool structure? There are two main

contributions of this paper. First, it gives a full picture of endogenous pool formation in a tractable

framework à la Lerner and Tirole (2004). Particularly, it explores the relationship between pool

structure outcome and value accumulation from increasing patents. Second, our analysis is based

on the notion of equilibrium binding agreements (Ray and Vohra 1997), and thus provides an

intriguing application of theory of coalition formation. JEL Classification: (C70, C71, K11, L13,
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1 Introduction

Cooperation among intellectual property owners, of which patent pool is a representative,

is often observed in a variety of industries. It is estimated that in 2001 sales of devices

wholly or partly based on pooled patents exceeded $100 billion (Clarkson 2003). Because

of the practical importance of pooling intellectual properties, theoretical literature thereof

has been initiated by, among others, Shapiro (2001), Kim (2004) and, remarkably, Lerner

and Tirole (2004).

The purpose of this paper is to investigate the endogenous coalition formation among

intellectual property owners in a three-patent setting. We mainly answer the following four

questions:

(Q1) What are the profits of patent pools in equilibrium under different pool structures?

(Q2) Under what circumstances is the complete pool or incomplete pool the stable pool

structure?

(Q3) Is a market structure of fragmented patents a possible outcome?

(Q4) What is the welfare effect of a stable pool structure?

In terms of the basic set-up, our analysis is pursuant to the work of Lerner and Tirole

(2004). In their seminal paper, Lerner and Tirole (2004) propose a tractable model of

patent pools which facilitates analyzing institutional features and antitrust policy, and

provides a necessary and suffi cient condition for a complete pool to enhance welfare. There

are two interesting features of their model with symmetric patents. First, none of the

patents is essential to the technology and each can be used individually or in a collective

way. This further introduces the following property of pricing behavior of patent holders in

equilibrium. Each patent holder seeks to maximize his profit, but at the same time, with

the constraint that the price of patent is low enough to be included in the basket adopted

by the users. These two existing forces enrich and complicate the model to a great extent.

Since this feature in a sense reflects the cumulative characteristic of innovation (Scotchmer

1991), it is kept and plays an important role in our analysis. Second, the only pooling choice

for patent holders is the complete pool. That is to say, in terms of patent pool structures,

only polar cases of a grand coalition and all stand-alone patents are considered. All the

in-between pool structures are assumed away. Nevertheless, this assumption is restrictive

when we study the endogenous formation of pool structures, considering the diversity of

pool sizes and structures in practice1. Hence, we retrieve the possibility of incomplete pool

1An example of absence of complete pool is the Third Generation Patent Platform Partnership (3G3P),
founded in 1999, which only provides general rules concerning licensing of patents covering the 3G mobile
telecommunication technologies. Five independent PlatformCos (platform companies), each consisting of
patents essential to one 3G radio interface technology, implement licensing functions separately (Guellec
and de la Potterie 2007).
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in our model, and explore when an incomplete pool can be a stable pool structure.2

There are two main contributions of our paper. First, it gives a full picture of endogenous

coalitional behaviors of intellectual property owners in a tractable framework à la Lerner

and Tirole (2004). Particularly, instead of putting an ambiguous tag of substitutability or

complementarity, we investigate the very relationship between pool structure outcome and

value accumulation from increasing patents. Second, in the course of finding the stable

pool structure, we provide a simple but intriguing application of game-theoretic modelling

of coalition formation, of which equilibrium binding agreements (Ray and Vohra 1997) is a

prominent representative.3 It is noted that our analysis goes beyond intellectual properties

and can be extended to economic phenomena characteristic of similar endogenous pooling

arrangements.

The notion of equilibrium binding agreements, proposed by Ray and Vohra (1997), is

adopted as a protocol of pool formation in our paper (see Section 4 for its details). Rather

than talking about the possibility of pool dissolving in a loose way, we base our analysis on

this notion in order to provide a solid strategic foundation in terms of stability of a pool

structure. Equilibrium binding agreements is quite involved in its general situation with

n heterogeneous players, but intuitive in our three-patent (symmetric) game. Generally

speaking, judging by the possibility of internal blocking by farsighted players, this notion

first labels every feasible pool structure as being “in equilibrium”or not, and then announces

the coarsest one “in equilibrium”to be the stable outcome. The focus on the coarsest “in-

equilibrium”pool structure especially makes sense in our setting, seeing that the number

of players is only three, and thus facilitates the free negotiation among all of them.

The sophistication of our analysis is twofold. On the one hand, when studying the

equilibrium profits given a pool structure, we inherit two elements from the set-up of Lerner

and Tirole (2004). As we mentioned above, intellectual property owners, individually or

collectively within a pool, try to maximize their profits, however, bearing in mind that their

patents could have been evicted from the basket of technology if prices were set too high.

(The demand margin is coined to refer to the former element, and the competition margin

the latter.) Consequently, as we show in Section 3, to fully characterize the profit allocation

under different pool structures, a series of conditions, including the usual dichotomy of

concavity and convexity, help and provide some critical cut-off values by the comparison

between the value of complete pool and those of smaller pools. In general, the greater the

value of complete pool, the more possibly all the pools get rid of the threat of excludability.

2For the sake of full tractability, we do our exercise in a setting with three patents, which suffi ces to
cover the case of one incomplete pool.

3We believe that the use of this theoretical tool, pitifully rare, broadens our understanding of cooperation
among economic agents, especially in the field of industrial organization where cooperative behaviors, e.g.,
collusions, strategic alliances, joint ventures and mergers, abound. See, for example, Bloch (2002) for a
survey of the coalition-formation approach in industrial organization.
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In addition, a big pool has more flexibility of pricing than a small pool, since the former

contributes more to the complete pool than the latter.

On the other hand, when we carry the set-up above into our analysis of endogenous

pool formation, the whole picture becomes even more blurred. In order not to get lost, it is

helpful to keep in mind one useful benchmark model: the standard model of output cartels in

Cournot oligopoly.4 When the number of symmetric firms is three, at first sight the complete

pool is subject to dissolving, in that one firm has incentive to free-ride given that the other

two stick together. However, if we allow for further defections, the other two firms will break

apart. This “instability” of incomplete pool makes free-riding unprofitable. Therefore,

once firms are regarded as farsighted, as is required by equilibrium binding agreements, the

complete pool structure passes the test of stability and becomes the reasonable prediction of

structure outcome.5 Nevertheless, in terms of different combinations of critical conditions,

besides the benchmark case above, we have in all seven different cases with various equilibria.

In contrast to the benchmark case, due to the pricing advantage of big pool, in many cases

(or subcases) the incomplete pool structure is preserved to be “in equilibrium”(and even

the stable one), thus retrieving the possibility of free-riding. As a result, a straightforward

prediction of structure outcome lacks and the stable pool structure relies on more subtle

conditions on the magnitude of complete pool in terms of values of smaller pools. Based on

this plethora of results, which are stated in Section 4, a general observation is that, when

the value of complete pool is suffi ciently high, or that of incomplete pool is suffi ciently low,

the complete pool is always the stable pool structure. Also, in most cases, the stable pool

structure always increases the consumer welfare, as long as the value of complete pool is

not too low.

Although all the intellectual properties are symmetric ex ante in our model, two kinds

of (a)symmetries arising, related to equilibrium profits and pool structures respectively,

and their interaction are noteworthy. The presence of threat of being excluded from the

basket raises the question of uniqueness of equilibrium profits of patent pools. As we will

see below, in one subcase of (symmetric) structure of fragmented patents, there exist one

symmetric equilibrium and infinite number of asymmetric equilibria. When focusing on the

symmetric equilibrium exclusively, both the complete pool and the (asymmetric) incom-

plete pool structure may be formed, and moreover, there is no possibility of (symmetric)

fragmented pool structure being the stable one. It is also the case when the most asym-

metric equilibrium is considered. Nevertheless, in contrast to the polar scenarios, a family

of moderately asymmetric equilibria introduce the possibility of (symmetric) fragmented

4See, for example, Yi (2003), and Ray and Vohra (1997, 1999). In our setting, it occurs when conditions
(a), (d) and (f) hold (see Sections 3 and 4 for details).

5This stability may not carry over into the general case of n-firm cartel, which is originally observed by
Salant et al. (1983). See Ray and Vohra (1997) for a complete model using equilibrium binding agreements.
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structure to be formed eventually. This provides an interesting example in which there

is no “monotonicity”of change of stable pool structure with the degree of symmetry and

extreme asymmetry does not lead to the finest market structure.6

Some other related literature is discussed here. Quint (2014) distinguishes further be-

tween essential and nonessential patents, and explores the welfare effect of different kinds

of patent pools using a model of logit demand. Still, he does not study the endogenous

formation of patent pools. Also based on the model of Lerner and Tirole (2004), Bren-

ner (2009) explores the formation of patent pools in a special class of games, where only

one (perhaps incomplete) patent pool is allowed to be formed and a sequential version of

unanimity game is adopted as the protocol of pool formation. However, he mainly focuses

on the optimal formation rules for preventing welfare decreasing pool equilibria, and does

not explicitly characterize the relationship between values of pools of different sizes and

categorization of stable pool structures. In this sense, our paper is complementary to his.

Aoki and Nagaoka (2006) tackle the problem of endogenous formation of patent pools, by

using Maskin’s (2003) solution concept in a partition function game. In contrast to Lerner

and Tirole (2004), the basic model there on which formation mechanism builds exclusively

involves essential patents.

The rest of the paper is organized as follows. Section 2 offers the general set-up and some

preliminaries à la Lerner and Tirole (2004). To answer Q1 and provide the building block

for our analysis, Section 3 characterizes the equilibrium profits of pools under different pool

structures. Section 4 introduces the notion of equilibrium binding agreements as a protocol

of pool formation, and presents the main results of our paper. Particularly, we implement

a simple algorithm to find the stable pool structure, and provide answers to Q2 and Q4 in

a symmetric game. Section 5 extends the discussion of stable pool structure and its welfare

effect to the situation with asymmetric equilibria. Especially, a possibility answer to Q3 is

provided. Section 6 provides some discussions on the protocol of pool formation and the

general n-patent case. Some concluding remarks are given in Section 7. All the proofs are

relegated to Appendix B. Several results in the n-patent case are presented in Appendix A.

2 The model and preliminaries

In this section we introduce a general model with n patents à la Lerner and Tirole (2004).

There are n intellectual property owners (thereafter, owners), each of whom has one intel-

lectual property protected as a patent. A different set of firms (licensees) can access some

or all of the patents by paying up-front fees (prices); i.e., there is no cross-licensing among

6The literature of applied theory of coalition formation has normally been confined to symmetric games
for the sake of tractability; i.e., given a coalition structure, a player’s payoff relies only on the number and
the size of coalitions (Section 4 is an example). Section 5 goes beyond the scope of this safe district.
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the owners. The cost of patent licensing is zero. Licensees are distributed over [θ, θ], and

licensee θ’s valuation on the licensed patents is of the form θ + V (k), where θ ∈ [θ, θ], k

is the number of patents licensee θ can access, and V (k) is a strictly increasing function

of k. In view of this, we say that patents are symmetric. Notice that θ can be regarded

as the licensee’s private value regardless of the number of patents to be used, while V (k),

not user-specific, is the common value. Assume that θ+ V (n) > 0 and the support [θ, θ] is

suffi ciently wide to guarantee interior solutions. Let F (θ) and f(θ) be the cdf and pdf of θ.

The hazard rate function f(θ)
1−F (θ)

is assumed to be strictly increasing in θ.

A pool structure C is a partition of n patents, where each element of C is a (perhaps

singleton) pool. Since patents are symmetric, a pool structure C can be concisely written

as a set {n1, n2, ..., nm}, where ni is the size of pool i, and
∑m

i=1 ni = n. For any subset

J ⊂ C, let ]J ≡
∑

nj∈J nj denote the number of patents in J .

The prices charged by the pools can be represented by a price profile p≡ (p1, p2, ..., pm),

where pi is the (total) price of ni patents in pool i for i = 1, 2, ...,m. Let P ≡
∑m

j=1 pj,

PJ ≡
∑

nj∈J pj for J ⊂ C. Sometimes p is written as
(
pi,p−i

)
to emphasize the role of

pool i, and P−i ≡
∑

j 6=i pj.

The timeline of game Γ played by the owners consists of four stages.

Stage 1. The owners form a pool structure C ≡ {n1, n2, ..., nm} using some protocol of
coalition formation, whose details will be discussed in Section 4.

Stage 2. Given the pool structure C, the price profile p≡ (p1, p2, ..., pm) is set in the

spirit of simultaneous Nash-like play by the pools. We neglect the details of decision-making

within each pool, and assume that each pool behaves as if there is a pool administrator

who aims to maximize the total profit of owners in this pool. The total profit is assumed to

be divided equally within a pool, as patents are symmetric ex ante.7 By contrast, we allow

asymmetric equilibria in the sense that the profits of two pools with the same number of

patents can be different.

Stage 3. Given the pool structure C and the price profile p, each licensee selects the

basket B ⊆ C based on the following maximization problem8

max
B⊆C
{V (]B)−PB} . (1)

Each licensee makes up the basket of some pool(s) in order to maximize the common value

(and hence, his total value) net total price of the basket. Clearly, this decision is not

user-specific, since it only depends on the common value and the price profile set in stage

7In symmetric games, equal intra-coalitional allocation can be endogenously vindicated under some
circumstances; see Ray and Vohra (1997, 1999).

8To break the tie, we assume that when there exist multiple baskets which are maximizers, the licensees
will choose the basket with the largest number of patents.
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2.

Stage 4. Given the basket B selected in stage 3, each licensee makes the decision on

whether to use the technology comprising all the patents in the basket. Specifically, licensee

θ adopts the technology if and only if θ + V (]B) ≥ PB. These decisions, which depend on

the licensees’private values, differ across the licensees.

Given a pool structure C formed in stage 1, we have a subgame Γ(C) comprising stages

2-4. In an isomorphic setting of asymmetric patents, Lerner and Tirole’s (2004) Proposition

6(i) characterizes the subgame perfect equilibrium of Γ(C).9 Mainly, it indicates three facts

related to the equilibrium (see Proposition A1 in Appendix A for its formal presentation):

(1) If some pool has positive sales10, then all the pools are in the equilibrium basket

considering the zero cost of licensing. Therefore, in equilibrium we can focus on the licensees’

demand D (P), induced in stage 4, for all the patents; i.e.,

D (P) ≡ Pr (θ + V (n) ≥ P) = 1− F (P− V (n)) .

(2) In equilibrium each pool is binded by either the competition margin or the demand

margin. Formally, when other pools charge the prices equal to p−i, the competition margin

z(p−i) of pool i is defined as the highest price it can charge; i.e.,

V (n)−P−i − z(p−i) = max
J⊆C\ni

{V (]J)−PJ} .

Given other pools’prices, if a pool charges a price higher than its competition margin, it

will be excluded from the equilibrium basket. Meanwhile, the demand margin of pool i is

denoted by

r(p−i) ≡ arg max
p
{pD(p+P−i)} ,

which is pool i’s optimal price in the absence of competition margin.11 Consequently, pool

i will charge the price equal to the minimum of z(p−i) and r(p−i).

(3) There exists a pool m′ such that in equilibrium all the bigger pools, charging the

same price, are binded by the demand margin. All the remaining pools are strictly binded

by the competition margin.

9As is pointed by Lerner and Tirole (2004) and Brenner (2009), one notorious fact is that there may
exist multiple equilibria of Γ(C). As we will see in Section 3, even in the simple case of n = 3, the number
of equilibria can be infinite under some circumstances.
10There may exist equlibria with zero sales when each pool charges an unreasonably high price which

makes the technology unadoptable for all the licensees even under unilateral price reduction. We ignore
these trivial equilibria.
11The monotone hazard rate f(θ)

1−F (θ) guarantees the quasi-concavity of the profit function and the unique-
ness of r(p−i) for each p−i. Notice that being binded by the demand margin (r(p−i) ≤ z(p−i)) is opposite
to being strictly binded by the competition margin (r(p−i) > z(p−i)).
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Under a pool structureC = {n1, n2, ..., nm}, once the equilibrium price profile p≡ (p1, p2, ..., pm)

is determined, the per-owner profit of every pool can be represented by a profit profile

π (C) ≡
(
D(P)p1

n1

,
D(P)p2

n2

, ...,
D(P)pm
nm

)
.

The collection of all the profit profiles under feasible pool structures is the building block

for our analysis of endogenous coalition of intellectual properties.12

3 3-patent case: profits

For notational convenience, let u ≡ V (1) + θ, v ≡ V (2) + θ and x ≡ V (3) + θ. In the

sequel, we consider a special case with n = 3. Correspondingly, the only feasible pool

structures are {1, 1, 1}, {1, 2} and {3} - the fragmented pool structure, an incomplete pool
(accompanied by a singleton pool), and one complete pool, respectively. In addition, we

make an assumption that licensees are uniformly distributed over [θ−∆, θ] where∆ ≡ θ−θ,
which induces the linear demand for all three patents in equilibrium. To see this, use

F (θ) = (θ − θ) /∆ and let θ = P−
(
x− θ

)
, we have

D (P) = 1−
P−

(
x− θ

)
− θ

∆
=
x

∆
− 1

∆
P.

In order to explicitly characterize the profit of every owner, some useful observations

(by Proposition A1) are as follows. Consider an equilibrium price profile p under C, and

let m be the number of pools, m′ and Z the number and total price of pools strictly binded

by the competition margin respectively13. Then the pools binded by the demand margin

charge the same price as

p̂ =
x− Z

m−m′ + 1
. (2)

When m > 1, by definition, pool i’s demand margin r(p−i) satisfies the following

r(p−i) =
1

2
(x−P−i) , (3)

12Using the jargon of cooperative game theory, the profit profiles can be represented parsimoniously
by a partition function v : {C|C is a partition of n patents} → Rn. Specifically, v assigns to each pool

structure C a profit vector
((

D(P)p1
n1

)
n1
, ...,

(
D(P)pm
nm

)
nm

)
, a configuration of profits for every owner,

where (p1, ..., pm) is an equilibrium price profile of pools under C.
13When m = 1 (complete pool), there is no competition margin and m′ = 0.
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and its competition margin z(p−i) satisfies the following

z(p−i) = V (3)−P−i − max
J⊆C\ni

{V (]J)−PJ} , (4)

where, particularly, J = {1} ({2}), if C = {1, 2} and ni = 2 (1); J ⊆ {1, 1}, if C = {1, 1, 1}.

Now we investigate the equilibria under different pool structures. In the case of complete

pool, three owners, forming an alliance of intellectual properties, act as a monopoly and

split the profit equally. Specifically, the total price P =1
2
x by (2), the licensees’demand

D (P) = 1
2∆
x, and the per-owner profit

π ({3}) =
1

12∆
x2.

When the pool structure is {1, 2} and {1, 1, 1}, the equilibria are complicated by the
conflicting forces of demand and competition margins. Therefore, the profit profile is con-

tingent on the magnitude difference among x, u and v. Propositions 1 and 2 give a bestiary

of profit profiles in the case of incomplete pool and fragmented structure, respectively.

Proposition 1.

π ({1, 2}) =


(

1
9∆
x2, 1

18∆
x2
)
, if (a): x ≥ 3

2
v;(

1
2∆
v (x− v) , 1

8∆
v2
)
, if (b): u+ 1

2
v ≤ x < 3

2
v;(

1
∆

(v + u− x) (x− v) , 1
2∆

(v + u− x) (x− u)
)
, if (c): x < u+ 1

2
v.

The categorization of profit profiles does not depend on the dichotomy of (strict) con-

cavity (x − v < v − u) and convexity (x − v ≥ v − u) of value accumulation. Instead,

there are two “threshold”values, u + 1
2
v and 3

2
v, which play important roles here. When

x is between the thresholds, by the proof of Proposition 1, the singleton pool is strictly

binded by the competition margin. When x is even lower than the low threshold, both

pools are strictly binded by the competition margin. In contrast to these two scenarios,

when x, with no upper bound, is larger than the high threshold, both pools are binded

by the demand margin with no effect of the competition margin. These observations are

consistent intuitively: the greater the value of complete pool (x) is with regard to those of

incomplete pool and stand-alone patent, the less likely the competition margin is binding

for both pools. Also, a pool of larger size is less likely to be binded by the competition

margin ceteris paribus, since the marginal contribution to the complete pool of a bundle of

patents is larger than that of a single patent.14

14In the standard model of output cartels in Cournot oligopoly, a small pool has higher per-owner profit
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Proposition 2.

π ({1, 1, 1}) =


(

1
16∆

x2
)

3
, if (d+f);(

1
∆

(3v − 2x) (x− v)
)

3
, if (concavity+g);

u−z
∆

(z, z, x− u− z) with z ∈
[
v − u, x−u

2

]
, if (e+convexity),

where (d): x > 2u, (e): x ≤ 2u, (f): x ≥ 4
3
v, and (g): x < 4

3
v.15

The dichotomy of concavity and convexity has effect on the categorization of profit

profiles under the pool structure {1, 1, 1}. However, it is not the only decisive dichotomy.
Furthermore, in the case (d+f), the accumulation of common value can be either concave

or convex, and the competition margin does not work. On the contrary, by the proof of

Proposition 2, all the three patents are strictly binded by the competition margin in the

case (concavity+g). Notice that in the former case x has no upper bound given u and v,

while x is doubly bounded from above in the latter case.16 The tendency of being binded

by the competition margin with low x under the fragmented structure resonates to our

observation under the incomplete pool structure, as is explained above.

In the case (e+convexity)17, (z, z, x− u− z) is the equilibrium price profile charged by

the owners. There exist infinite number of equilibria in this case; i.e., z, the price charged

by the first two owners, can vary from v−u to x−u
2
in equilibrium. Except when z = x−u

2
, all

of them are asymmetric equilibria in which singleton pool 3 makes the high profit while the

other two make the same low profit. The smaller z is, the more asymmetric the equilibrium

is. Thereby, z indicates the degree of symmetry (or fairness in a normative sense, in view of

the ex ante symmetry of patents). Notice that the lower bound of z is the marginal value

of a patent to an incomplete pool, and the upper bound is half of the marginal value of

two patents to the complete pool. In other words, the owner in a disadvantageous position

can guarantee his charge as what he contributes when forming an incomplete pool with

another owner, and expect the highest price to be an equal split of the marginal value,

when two owners together join the advantageous owner and create one complete pool.

than a big pool since every pool shares the same profit. However, this is not always the case in our model.
Actually, it can be verified that {2} earns higher per-owner profit than {1} when (b) and x < 5

4v hold, or
when (c) and concavity hold. This reflects the fact that, unlike the case where competition margin does not
exist, the owner in a big pool may not be worse-off, since a small pool is hindered in its ability of pricing
with the presence of competition margin (c.f., Proposition A1).
15For convenience, we use “( + )”to represent conditions holding jointly. These three groups of conditions,

(d+f), (concavity+g), and (e+convexity) are disjoint and cover all the possible combinations of u, v and
x. To see the completeness, notice that (concavity+f) implies (d), and (convexity+d) implies (f).
16The case (e+convexity) is a bit more complicated; see the proof of Proposition 2 for details. Generally

speaking, owners are still vulnerable to the competition margin, especially when x is strictly bounded from
above by (e).
17To make (e+convexity) hold, we require that v ≤ 3

2u. If v >
3
2u and convexity hold, we fall into the

case (d+f).
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Furthermore, the profit of the advantageous (disadvantageous) owner decreases (increases)

in z and reaches its minimum (maximum) in the polar case of symmetry.18

4 Stable pool structures

In this section, we restrict ourselves to the symmetric equilibrium under the pool structure

{1, 1, 1}. Specifically, in the case (e+convexity), symmetry is obtained when z = x−u
2
, and

π ({1, 1, 1}) =

(
1

4∆
(3u− x) (x− u)

)
3

.

Now we look at the details of stage 1 in game Γ: how the owners form the stable pool

structure while having in mind the picture of profit profiles under different pool structures.

Here we use the notion of equilibrium binding agreements (EBA), suggested by Ray and

Vohra (1997), as the protocol of pool formation in our analysis.19 And we call a pool

structure an equilibrium pool structure (EPS) if, under this structure, neither a single owner

nor a group of owners within one pool has incentive to break away from the current pool

by using the protocol of EBA. We aim to find the coarsest EPS as the stable pool structure.

Two main features of EBA are as follows20:

(1) Only internal deviations of a subset of an existing pool are allowed, and there is

no opportunity of re-merging after break-ups or cooperation among the owners in different

pools. In this sense {1, 1, 1} is an EPS, since every pool is singleton and there is no further
chance of defection.

(2) When one owner considers breaking away from the complete pool, he does not assume

that the resulting structure is {1, 2}. Instead, he evaluates whether the complementary
coalition {2} will split even further and the pool structure end up in {1, 1, 1}. Similarly,
when the coalition {2} considers breaking away from the complete pool, both members have
in mind the possibility of betrayal from his fellow member and {1, 1, 1} as the resulting
structure.21 In this sense, the owners are farsighted in the course of coalition formation.

To illustrate the idea of EBA, consider the baseline model of output cartels in Cournot

18To see this, notice that 1
∆ (u− z) (x− u− z) reaches its global minimum at z = x

2 and
x
2 > x−u

2 ;
1
∆ (u− z) z reaches its global maximum at z = u

2 and
u
2 ≥

x−u
2 by (e).

19This notion is further extended using von Neumann and Morgenstern (1944) abstract stable set by
Diamantoudi and Xue (2007). For applications of EBA, see Ray and Vohra (1997) and Levy (2004). For
an overview of different protocols of coalition formation, see, for example, Bloch (2003) and Yi (2003).
20Another important feature of EBA, named “the best response property”, is incorporated in the speci-

fication of stage 2. In view of that, we say that the agreements within pools are binding, while there is no
precommitment across pools.
21However, under the pool structure {1, 2}, when one owner considers breaking away from {2}, the only

candidate for the resulting structure is {1, 1, 1}.
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oligopoly, as the case (a+d+f) in our setting:

π ({3}) =
1

12∆
x2, π ({1, 2}) =

(
1

9∆
x2,

1

18∆
x2

)
and π ({1, 1, 1}) =

(
1

16∆
x2

)
3

.

When one owner (leading perpetrator) considers defecting from the complete pool, he does

not assume that the other two owners remain together. Instead, he takes into account their

reactions to his defection. Since 1
18∆

x2 < 1
16∆

x2, once the leading perpetrator leaves the

complete pool, the temporary coalition of the other two owners will break apart and the pool

structure will be further changed to {1, 1, 1}. We say that {1, 1, 1} blocks {1, 2}. Therefore,
the leading perpetrator will compare π ({3}) with π ({1, 1, 1}) instead of π ({1, 2}). Since

1
12∆

x2 > 1
16∆

x2, no owner has incentive to part from his fellow members ({1, 1, 1} does not
block {3}), and then the complete pool, as the coarsest EPS, is the stable pool structure.
Based on EBA, we have the following simple algorithm to find the stable pool structure.

Step I. By comparing the per-owner profit of {2} in π ({1, 2}) with the profit of {1} in
π ({1, 1, 1}), answer the question: Is {1, 2} an EPS?22 If YES, go to step III. Otherwise, go
to step II.

Step II. By comparing the per-owner profit in π ({3}) with the profit of {1} in π ({1, 1, 1}),
answer the question: Is {3} an EPS? If YES, {3} is the coarsest EPS. Otherwise {1, 1, 1}
is the coarsest EPS. The algorithm stops.

Step III. Answer the same question as in step II, however, by checking whether {1}
or {2} has incentive to defect from the complete pool. That is to say, compare the per-

owner profit in π ({3}) with the profit of {1} and the per-owner profit of {2} in π ({1, 2})
respectively. If YES, {3} is the coarsest EPS. Otherwise {1, 2} is the coarsest EPS. The
algorithm stops.

One useful observation is that {3} is the stable pool structure when we end up in step
II. This is because the complete pool maximizes the total profit of the three owners.23 As

an example of this algorithm, reconsider the case (a+d+f). In step I, by the analysis above,

the answer is NO. Then we proceed to step II and know immediately that {3} is the stable
pool structure by the previous observation. Also, this implies that the fragmented pool

structure can never be stable in the symmetric scenario.

Since the cases (c+d+f) and (a+concavity+g) do not exist24, altogether, there are seven

cases we need to investigate in terms of different combinations of conditions (a)-(g) and

concavity/convexity. In addition to the case (a+d+f), the other six cases with more com-

plexities are analyzed below using the algorithm.25

22A rephrasing of the question is that: Does {1, 1, 1} block {1, 2}? If YES, then {1, 2} is NOT an EPS.
23See Proposition 7.1(ii) in Ray and Vohra (1997).
24To see the former, notice that (c+d) implies v > 2u, and (c+f) implies v < 6

5u.
25For the sake of brevity of our presentation, we focus on the full-fledged subcases where all the critical
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4.1 (d+f)

When (b+d+f)26, the equilibrium under the pool structure {1, 1, 1} is the same as in the
baseline case (a+d+f). However, the change of equilibrium under the pool structure {1, 2}
leads to a big difference of the stable pool structure. In particular, there are two subcases in

terms of a cut-off value
√

2v. When x >
√

2v, similar to the baseline case (a+d+f), {1, 2}
is not an EPS (step II) for 1

8∆
v2 < 1

16∆
x2 and {3} is the coarsest EPS. On the contrary,

when x ≤
√

2v, {1, 2} becomes an EPS (step III) and algebra in the proof of Proposition
3 shows that 1

12∆
x2 < 1

2∆
v (x− v). Therefore, {1} has incentive to break away from the

complete pool27 and the coarsest EPS is {1, 2}.

Proposition 3. Let x1 ≡
√

2v. In the case (b+d+f), when x > x1, the stable pool structure

is {3}; when x ≤ x1, the stable pool structure is {1, 2}.

4.2 (concavity+g)

Proposition 4. Let x2 ≡
√

3
2
v, x3 ≡

(
3−
√

3
)
v, and x4 (x5) ≡ 1

7

(
6u+ 3v − (+)

√
3δ
)
,

where δ ≡ 3v2 − 2uv − 2u2 if δ ≥ 0. In the case (b+concavity+g), when x2 ≤ x ≤ x3,

the stable pool structure is {3}; otherwise, the stable pool structure is {1, 2}. In the case
(c+concavity+g), when x4 < x < x5, the stable pool structure is {1, 2}; otherwise, the stable
pool structure is {3}.28

In both cases, the pool structure {1, 2} becomes an EPS. Furthermore, there appears a
plethora of outcomes caused by different leading perpetrators. In the case (b+concavity+g),

when x < x2, {2} is the leading perpetrator from the complete pool, while {1} breaks away
when x > x3. When x2 ≤ x ≤ x3, neither {2} nor {1} induces a defection. In the case
(c+concavity+g), {2} is the leading perpetrator when x4 < x < x5, while a single owner

never defects. It is noted that, because of the quadratic profit function, the stable pool

structure does not change monotonically when x varies in either case.

values of x, listed in Propositions 3-5, are attainable. All the relevant conditions for attainability are given
in the footnotes or the proofs. So are the conditions which make these six cases occur.
26To make the set of x’s satisfying (b+d+f) nonempty, we must have 2u < 3

2v and hence v >
4
3u. This,

in turn, implies that u + 1
2v <

4
3v. Hence (b) and (f) are equivalent to

4
3v ≤ x < 3

2v. Notice that in
Proposition 3, x1 ≡

√
2v ∈

(
4
3v,

3
2v
)
.

27This implies that {2} has no incentive to break away from the complete pool, otherwise the total profit
in the pool structure {1, 2} would be higher than that in {3}.
28To make the set of x’s satisfying (b+concavity+g) nonempty, we must have v > 4

3u. In addition, when
v > 1√

3/2−1/2
u
(
> 4

3u
)
, both x2 and x3 satisfy (b+concavity+g). Without the latter condition, however,

our result does not change. Also, x4 always satisfies (c+concavity+g), and so does x5 if v < 2
√

6+2
5 u and

v 6= 5
4u. Still, whether x5 satisfies (c+concavity+g) does not affect our result.
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4.3 (e+convexity)

Proposition 5. Let x6 ≡ 2u−
√

2
2

√
2u2 − v2, if 2u2−v2 > 0. In the cases (a/c+e+convexity),

the stable pool structure is {3}. In the case (b+e+convexity), when x3 < x ≤ x6, the stable

pool structure is {1, 2}; otherwise, the stable pool structure is {3}.

In the cases (a/c+e+convexity), the pool structure {1, 2} is not an EPS and we end
up in the complete pool. Unlike all the other cases, in the case (b+e+convexity), whether

{1, 2} is an EPS is indeterminate, and depends on the magnitude of x in terms of a cut-off
value x6. When it is (x ≤ x6), {2} is never the leading perpetrator breaking away from the
complete pool, while a single owner benefits from defection when x > x3.

4.4 Summary and examples

The following table summarizes the results of Propositions 3-5 and some pivotal information

about pool formation under different pool structures.

When is the coarsest EPS {3}? {1, 2}? Is {1, 2} an EPS? Who defects?∗

a+d+f Always Never

b+d+f x > x1 x ≤ x1 x ≤ x1 {1}
b+concavity+g x ∈ [x2, x3] x /∈ [x2, x3] Always {2} [/] {1}∗∗

c+concavity+g x /∈ (x4, x5) x ∈ (x4, x5) Always / ({2}) /
a/c+e+convexity Always Never

b+e+convexity x /∈ (x3, x6] x ∈ (x3, x6] x ≤ x6 / ({1}]

(∗The complete question is “Who defects from {3} if {1, 2} is the coarsest EPS?”∗∗The notation

means that when {1, 2} is an EPS, {2} defects from {3} if x < x2 and {1} defects if x > x3.

Other notations are used similarly.)

Based on what we find in Propositions 3-5, some remarks are made as follows. First,

when {1, 2} is the stable pool structure, in the cases with concavity, a two-owner group
is normally the leading perpetrator (except the subcase with x > x3), while in the cases

with convexity, a single owner is the only possible leading perpetrator. Intuitively, this

corresponds to the fact that with a concave value function, an incomplete pool constitutes

the most part of complete pool’s value, while with a convex value function, a single patent

contributes greatly to the complete pool.

Second, the following proposition shows that, as long as x is suffi ciently large compared

with v, or v is suffi ciently small compared with u, the stable pool structure is (almost) the

complete pool. In other words, when the complete pool is valued highly, or the incomplete
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pool is valued poorly, the owners tend to end up in capturing the highest total profit by

forming a grand coalition. Surprisingly, the latter condition is irrespective of x.

Proposition 6. If x > x1, except the case (b+e+convexity), the stable pool structure is

{3}; furthermore, if (a), the stable pool structure is always {3}. If v < 4
3
u, except the case

(c+concavity+g), the stable pool structure is {3}; furthermore, if v <
√

7+1
3
u, the stable

pool structure is always {3}.

Last, to further illustrate the implications of Propositions 3-5, we provide some examples

of interest with specific value functions. (In all the following examples, ε is an infinitesimal

number.)

Example 1. Consider one technology to which one patent is suffi cient, and more patents
added are redundant. That is, let v = u + ε and x = u + 2ε. By Proposition 6, we

know immediately that {3} is the stable pool structure. More specifically, this is the case
(c+e+convexity).

Example 2. Consider one technology which performs at its maximum with two patents.

Meanwhile, individual use of patent generates no value. That is, let u = ε and x = v + ε.

It can be verified that this value function satisfies (b+concavity+g). Furthermore, x < x2,

and by Proposition 4, {1, 2} is the stable pool structure. Notice that {2}, with exactly the
critical number of patents the technology requires, has incentive to break away from the

complete pool.

Example 3. Consider one technology consisting of all three patents, which have no values
if used in any other way. That is, let u = ε and v = 2ε. By Proposition 6, the stable pool

structure is {3}. More specifically, it falls into the baseline case (a+d+f).

Example 4. Consider one technology with a linear value function. That is, let V (k) =

Ak−θ (k = 1, 2, 3), where A is a positive coeffi cient of value accumulation. It can be verified

that this linear value function satisfies (b+d+f), and furthermore, x > x1. Therefore, by

Proposition 3, the stable pool structure is {3}.

Example 5. Consider one technology with a power value function in the form of V (k) =

kα − θ (k = 1, 2, 3), where α > 0, α 6= 1. When the value function is convex (α > 1),

(a+d+f) is the case with the complete pool as the stable pool structure. When the value

function is concave (α < 1), varieties of the stable pool structure arise. For example,

if α ∈
(
log3/2

(
3−
√

3
)
, log3/2

√
2
)
, the stable pool structure is {1, 2} by Propositions 3

and 4. [More specifically, when α ≥ 2 ln 2−ln 3
ln 3−ln 2

∈
(
log3/2

(
3−
√

3
)
, log3/2

√
2
)
, it is the case

(b+d+f); otherwise value function satisfies (b) and (g).] If α ∈
(

1
2
, log3/2

(
3−
√

3
)]
, it falls
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into the case (b+concavity+g), and, by Proposition 4, the stable pool structure is {3} since
x2 ≤ x ≤ x3.

4.5 Welfare analysis

Based on the analysis of the stable pool structure above, we can investigate its effect on

consumer surplus. We say that the stable pool structure increases welfare if the total price

under the stable pool structure is lower than that under the fragmented structure. The

following proposition shows that among all the cases, four cases always lead to welfare

improvement, and so do the other cases under some circumstances.29

Proposition 7. In the cases (a/b+d+f), (a/b+e+convexity), the stable pool structure

always increases welfare. In the case (b+concavity+g), the stable pool structure increases

welfare if and only if x ≥ x2. In the case (c+e+convexity), the stable pool structure

increases welfare if and only if x > 3
2
u. In the case (c+concavity+g), the stable pool

structure always decreases welfare except when v > 5
4
u and x ≥ x5 hold together.

Proposition 7 shows that, except the case (c+concavity+g), which has a very restrictive

value of complete pool, in all the other cases, the stable pool structure has a tendency

of increasing the consumer welfare (as long as the value of complete pool is large enough

in some cases). For instance, in the benchmark case (a+d+f), the stable complete pool,

when internalizing the negative strategic externalities across individual owners, decreases

the total price from 3
4
x to 1

2
x.30

5 Asymmetric games

As we have seen in Proposition 2, though the patents are symmetric ex ante, there exists

asymmetric equilibria under the fragmented pool structure. Particularly, one owner (called

A) may have a pricing advantage and earn higher profit than the other two (called a).

To investigate some properties of the stable pool structure when allowing for asymmetric

equilibria, we need to distinguish between two different pool structures with one incomplete

29To break the tie, we ignore the boundary situations where two pool structures share the same total
price.
30It can also be shown that in the cases (a/b+d+f), (a/b+e+convexity) and (b+concavity+g) except

when x < 6
5v, the complete pool charges the lowest total price. These are the cases where at least the

incomplete pool is binded by the demand margin, and this observation is consistent with the behaviors we
usually expect from the players with strategic substitutes. In all the cases with (c), as long as x is not too
large (x > 6

5v in the case with concavity, x >
3
2u in the case with convexity), the fragmented structure

always leads to the lowest total price. This reflects the fact that being binded by the competition margin
hinders the owner’s ability of pricing.
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pool: {a, aA} with one a andA forming one pool, and {A, aa} with stand-aloneA. Similarly,
we denote the complete pool by {aaA}, and the fragmented structure {a, a, A}.
The algorithm of finding the stable pool structure, based on the notion of EBA, needs

to be modified accordingly. Generally speaking, we are supposed to check whether {a, aA}
and {A, aa} are EPS respectively, and then, based on that, evaluate the stability of {aaA}.
Subtleties of the algorithm arise here. When both {A, aa} and {a, aA} are EPS, it is
suffi cient to check whether {aaA} is blocked by either of the incomplete pool structures.
On the other hand, when only one of the incomplete pool structures is an EPS, by the

definition of EBA, we need to check whether the complete pool is blocked by this EPS

and {a, a, A} which is always an EPS. However, in our setting, when {A, aa} is an EPS
and {a, aA} is not, we only need to check whether {A, aa} blocks {aaA}. The reason is as
follows. Since {A, aa} is an EPS, {a, aA} would be on the blocking route if {a, a, A} blocked
the complete pool. This implies that {a} or {aA} is the leading perpetrator. However, recall
that even in the symmetric game, a single (farsighted) owner in the complete pool who earns

higher profit than a has no incentive to end up in the fragmented structure, and thus, there

is no possibility of {a, a, A} blocking {aaA}.31

One asymmetric game of special interest is that when A earns the highest profit, z =

v − u, and
π ({a, a, A}) =

2u− v
∆

(v − u, v − u, x− v) .

Instead of fully characterizing the stable pool structure, which is a repetitive exercise as in

Section 4, the following proposition demonstrates that the coarsest EPS tends to be finer

in the most asymmetric scenario. (Recall that in the cases (a/c+e+convexity) with sym-

metric equilibrium, the complete pool is always stable.) In the proof of Proposition 8, it is

shown that {A, aa} becomes an EPS deterministically in all the cases with (e+convexity).32

Intuitively, considering the worst-off situation under the fragmented structure, the two dis-

advantageous owners are willing to stick together for the sake of higher profits, and thus

stabilize the incomplete pool structure.

Proposition 8. When z = v − u, {A, aa} can be the stable pool structure in all the cases
with (e+convexity), and {a, a, A} is never the stable pool structure in any case.

Let π (a|A, aa) denote the profit of a under the pool structure {A, aa}, and other nota-
tions are defined in a similar way. In view of Proposition 8, one may wonder whether the

31This reasoning is covered by the definition of EBA, particularly (B.3) in Ray and Vohra (1997). The
fact that A is the only possible leading perpetrator from {aaA} to {a, a,A} implies that re-merging of the
other owners except the leading perpetrator leads to a pool structure which is also blocked by {a, a,A}.
Obviously, this is not the case, since {A, aa} is an EPS.
32By contrast, {a, aA} must not be an EPS whenever {1, 2} is not an EPS in the symmetric counterpart.
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fragmented structure {a, a, A} would be the stable pool structure in some case.33 This can
only occur when none of the pool structures, except {a, a, A} itself, are EPS. Formally, this
requires that

π (a|A, aa) < π (a|a, a, A) , (5)

and π (A|aaA) < π (A|a, a, A) . (6)

Notice that (5) also implies that {a, a, A} blocks {a, aA} with A defecting.34 The following
proposition gives us a possibility answer in the case with (a). Interestingly, we illustrate that

the fragmented structure as the stable pool structure occurs when the degree of symmetry,

z, is in the middle of its range, other than either of the polar districts. That is to say,

in our setting with the formation protocol of EBA, the finest market structure outcome

results from the modest asymmetry (unfairness) instead of any extreme situations. The

intuition behind that is clear. To make the fragmented structure prevail, both (5) and

(6) should hold simultaneously. Nevertheless, the former condition is violated under the

extreme asymmetry (as is shown in the proof of Proposition 8), while the latter never works

in the symmetric scenario. Correspondingly, when the degree of symmetry is suffi ciently

high (low), the stable pool structure is consistent with what we observe in the symmetric

(extremely asymmetric) game, as is stated in Proposition 5 (8).

Proposition 9. In the case (a+e+convexity), there exists (z, z) ⊂
[
v − u, x−u

2

]
such that

the stable pool structure is {A, aa} when z ∈ [v − u, z], {a, a, A} when z ∈ (z, z), and

{aaA} when z ∈
[
z, x−u

2

]
.35

There is some welfare implication when allowing for asymmetric equilibria. In the case

(a+e+convexity) with symmetric equilibrium, as is shown in Proposition 5, the complete

pool is always the stable pool structure, and hence the consumer welfare is represented

by the price charged by the complete pool, 1
2
x. This is also the case when the degree of

symmetry is high enough
(
z ∈

[
z, x−u

2

])
by Proposition 9. However, when the equilibria are

suffi ciently asymmetric (z ∈ [v − u, z]), the consumer welfare is reduced with the incomplete
pool structure charging the total price of 2

3
x. When the fragmented pool structure is stable

(z ∈ (z, z)), the total price is x− u+ z, increasing in z, and welfare effect is contingent on

the value of complete pool. As is summerized in the following proposition, the total price

under the stable fragmented pool structure may increase or decrease compared with that

under the complete pool, and the higher x is, the lower the possibility is of improving the

33Furthermore, we can show a strong impossibility result: In the case (c+e+convexity), {a, a,A} is never
the stable pool structure for any z.
34This is because π (A|a, aA) = π (a|A, aa) and π (a|a, a,A) < π (A|a, a,A).
35The values of z and z are given in the proof.
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consumer welfare.

Proposition 10. In the case (a+e+convexity), when x < 18
11
u, there exists z∗ ∈ (z, z) such

that z ∈ (z, z∗) [ z ∈ (z∗, z)] leads to a lower [higher] total price than the one charged by

the complete pool; when x ≥ 18
11
u, any z ∈ (z, z) leads to a higher total price.36

6 Discussion

6.1 Sequential bargaining as an alternative protocol

Another prevailing protocol of coalition formation in the literature, in the spirit of se-

quential bargaining, is the infinite-horizon unanimity game, suggested by Bloch (1996) and

generalized by Ray and Vohra (1999).37 According to some order of moves, the first owner

proposes a pool including himself to a group of owners (or leaves the game as a singleton

pool). If the proposal is accepted sequentially by all the members of this pool, this pool

leaves the game and the remaining owners continue playing the game. If one potential

member rejects the current proposal, the game shifts to a new start initiated by a proposal

from this rejector. When every owner belongs to a pool, the unanimity game stops and we

proceed to the second stage of the game Γ. If the unanimity game continues forever, all the

owners get payoffs of zero. The main results in Bloch (1996) and Ray and Vohra (1999)

show that in the symmetric game a focal prediction of the (stationary perfect) equilibrium

coalition structure can be derived by finding a subgame perfect equilibrium of a sequential

game of choosing pool size, which proceeds as follows. The first owner chooses an integer

k1 ∈ [1, n] and the first k1 owners form a pool. Then the (k1 + 1)-th owner chooses an

integer k2 ∈ [1, n− k1] as the size of the next pool and the game continues to the move of

the (k1 + k2 + 1)-th owner. The game stops when all the owners are exhausted.

It is straightforward to see that in our three-patent symmetric game, the coarsest EPS

coincides with the coalition structure resulting from the subgame perfect equilibrium of

the game of choosing pool size. Therefore, these two protocols of pool formation give us a

common solution to the stable pool structure.38

36This proposition is of special interest if z can be adjusted to improve the consumer welfare. When
x < 18

11u, the highest welfare arrives at z slightly higher than z. Otherwise, the (almost) symmetry is the
best choice.
37See Bloch (1995), Yi (1998), Morasch (2000), Ray and Vohra (2001) and Greenlee (2005) for its appli-

cations. Ray’s (2007) seminal book on coalition formation is devoted entirely to these two protocols, the
blocking approach we use in Section 4 and the bargaining approach. The former is more in the spirit of
cooperative game theory, while the latter of noncooperative bargaining.
38This invariance also follows a general observation: In a symmetric three-player partition function game

with generic payoffs, the coarsest equilibrium coalition structure based on EBA is equivalent to the coalition
structure resulting from the subgame perfect equilibrium of the game of choice of coalition sizes.
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6.2 An n-patent case with homogenous licensees

In this subsection, we provide a preliminary discussion on the complexity of endogenous

pool formation in the general case with n intellectual property owners. In the preceding

part of the paper, the licensees are assumed to be heterogeneous with a variable of private

value θ following some distribution. Naturally, a simpler case is that with a continuum of

licensees with the same private value denoted by θ. Still, assume that θ + V (n) > 0 and θ

is suffi ciently large to guarantee the adoption of technology. In particular, in stage 4, the

licensees adopt the technology if and only if θ + V (]B) ≥ PB. The rest part of the model

is the same. Similarly, given a pool structure C = {n1, n2, ..., nm} formed in stage 1, we
have a subgame Γ(C) comprising stages 2-4. All the pools are in the equilibrium basket

B. More importantly, in equilibrium only competition margins work, and the equilibrium

price profile p ≡ (p1, p2, ...pm), which may not be unique, satisfies the following system of

equations

pi = V (n)−P−i − max
J⊆C\ni

{V (]J)−PJ} , for every ni ∈ C.

Obviously, in a three-patent case, the coarsest EPS is unique since any two of pool

structures are comparable in terms of coarseness. On the contrary, in a n-patent case

even with homogenous licensees and no externalities, there may exist multiple stable pool

structures, as is shown in the following example.

To further remove the externalities across the pools, we assume that either condition in

Proposition A2 (see Appendix A) is satisfied. Let w(t) ≡ V (n) − V (n − t) for t ≤ n, and

then w(t)/t is the average marginal contribution to the complete pool of a pool of size t.

By Proposition A2, given a pool structure C = {t1, t2, ..., tm}, the profit profile π (C) in the

last stage is (
w (t1)

t1
,
w (t2)

t2
, ...,

w (tm)

tm

)
.

Notice that w(ti)
ti
is irrespective of the ambient pool structure.39

Example 7. Let n = 6. Consider the following value function V (t) and its corresponding

per-owner profit π (t)

t 1 2 3 4 5 6

V (t) 11.5 14 36 46 53 54

w(t)/t 1 4 6 10 8.5 9

.

By the notion of EBA, there are two coarsest equilibrium (and hence, stable) pool structures,

{2, 4} and {3, 3}, both consisting of two pools. (Note that {1, 5} is blocked by the EPS
39Here the partition function is reduced to a characteristic function, which is the more conventional

analysis tool in cooperative game theory, v : {t|t ∈ N, t ≤ n} → Rt such that v (t) =
(
w(t)
t

)
t
.
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{1, 1, 4}, and the complete pool is blocked by {2, 4}.) Also, it shows that when the number
of patents is larger than 3, any stable pool structure may consist of multiple incomplete

pools without any stand-alone patent.

This example indicates that if we want a sharper prediction of the stable coalition

structure, the notion of EBA needs to be refined. One way to do this is to require that

the coarsest EPS block some coarser pool structure. In Example 7, {3, 3} does not satisfy
this requirement. Another way is to use the bargaining approach with specific negotiation

process, which we discuss above. With generic payoffs, it will lead to a unique predic-

tion of pool structure in subgame perfect equilibrium, which is a concatenation of pools

{t1, t2, ...tm} satisfying

t1 = arg max
t≤n

w(t)

t
, tj = arg max

t≤n−
∑
k<j t

k

w(t)

t
for j > 1, and

m∑
j=1

tj = n.

It also provides the prediction of {4, 2} for Example 7.

7 Conclusion

In this paper, we study the endogenous coalitional behaviors of intellectual property owners

in a three-patent setting. Based on a general characterization of equilibrium in the n-patent

case, we fully characterize the equilibria under different pool structure with three patents.

A striking interaction between the demand margin and the competition margin gives rise to

a plethora of equilibrium scenarios. In particular, the competition margin works more often

under any pool structure with a low-value complete pool, and it affects less a pool of large

size. Also, it is noted that under the fragmented pool structure, the number of equilibria

can be infinite, and the class of asymmetric equilibria drives some interesting results on

stable pool structures and welfare effects thereof.

In terms of different combinations of decisive conditions, including concavity and con-

vexity, there are seven cases in which the endogenous pool formation is investigated in a

symmetric game. When addressing the stability of different pool structures, we resort to

the notion of equilibrium binding agreement. This notion incorporates the farsightedness

and internal deviation of owners, and is well suited to our three-patent game. We im-

plement a simple algorithm to check which feasible pool structure is the stable one, and

the identification of incomplete pool structure becomes a pivotal link in our analysis. Not

surprisingly, there is no straightforward prediction of the stable pool structure, but the

fragmented pool structure is never stable. Moreover, the complete pool always forms, if

its value is suffi ciently large or the value of incomplete pool is suffi ciently small. Often are
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consumers better-off under the stable pool structure, as long as the complete pool is highly

valued. These results are robust in the sense that nothing is changed when a sequential

unanimity game is adopted as the pool formation protocol instead of equilibrium binding

agreement.

An interesting variant is the one introducing asymmetric profit equilibria. In the most

asymmetric scenario, though the fragmented structure is still impossible to be formed, the

stable pool structure tends to be finer than the symmetric counterpart. More importantly,

the stability of the fragmented pool structure is eventually established in the range of

moderate asymmetry in one subcase. In addition, its effect on the consumer welfare may

be positive.

To conclude our paper, we point out some potential directions for further research. First,

in our analysis patent owners collect up-front fees from licensees who access their patents.

Except up-front fees, per-unit royalties and combinations of the two are used in practice

(Taylor et al. 1973). It may be interesting to study the effect of different licensing policies

on endogenous pool formation, and sharpen our understanding of issues related to patent

licensing.40 Second, in our paper the terms of intellectual property (owner) and patent are

used interchangeably. However, in reality uncertain situations arise related to licensing and

use of intellectual properties, for example, patent litigation (Choi 2010) and spillovers across

intellectual properties (Yi and Shin 2000). An enriched model is necessary to study the

endogenous coalition formation of intellectual properties when patents are “weak”. Last,

an extension of the current model to a general n-patent case is far more than trivial.

Appendix A

First, we characterize and show the existence of the subgame perfect equilibrium of Γ(C)

introduced in Section 2.

Proposition A1 (Lerner and Tirole 2004). Given C ≡ {n1, n2, ..., nm} with n1 ≤ n2 ≤
... ≤ nm, there exists (at least) one equilibrium of Γ(C). Any equilibrium basket is C. Any

equilibrium price profile is in the form of p ≡ (z1, z2, ...zm′ , p̂, ..., p̂) satisfying the following

conditions:

(a) 0 ≤ m′ ≤ m (p ≡ (p̂)m when m′ = 0, p ≡ (zi)
m
i=1 when m

′ = m);

(b) zi = z(p−i) for i = 1, ...,m;

(c) If m′ < m, p̂ is defined by p̂D′(P) + D(P) = 0. And p̂ > zj for j = 1, ...,m′; p̂ ≤ zj

for j = m′ + 1, ...,m;

40There is abundant literature on game-theoretic models of patent licensing. See Kamien (1992) for a
survey, and Sen and Tauman (2007) and references thereof for recent study.
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(d) If m′ = m, zi < r(p−i) for i = 1, ...,m.

Proof: (Existence) Let pi ∈ X ≡
[
0, θ + V (n)

]
, the nonempty compact convex set of

each patent pool’s price candidates. Patent pool i’s best response function is BR(p−i) =

min
{
z(p−i), r(p−i)

}
. Obviously, r(p−i) and z(p−i) are continuous. Hence the function(

BR(p−i)
)m
i=1

: Xm → Xm is continuous. By Brouwer’s fixed point theorem, there exists a

fixed point p∗ which is in the equilibrium of Γ(C).

(Equilibrium basket) Assume by absurdity that there exists an equilibrium price profile

p≡
(
p−i, pi

)
with ni /∈ B for some patent pool i. Let p′i be a (positive) price lower than

V (]B + ni)− V (]B), then V (]B + ni)−PB − p′i > V (]B)−PB ≥ V (]B′)−PB′ for any

B′ with ni /∈ B′. The second inequality comes from the fact that B is the maximizer of (1)

under p. Thus, under
(
p−i, p

′
i

)
, ni belongs to the “new”basket. Hence, the patent pool i

has incentive to lower its price from pi to p′i, in view of earning positive profit.

(Equilibrium prices) Proposition 6(i) in Lerner and Tirole (2004) shows that the prices

satisfying conditions (a)-(d) are in the equilibrium. Here we show the opposite. Suppose

that pi = p̂(≤ zi) for some i. To show that for any j > i, pj = p̂, assume that pj 6= p̂

by absurdity. (The necessity of the rest part of conditions (a)-(d) is apparent.) Then

pj = zj < p̂. By definition, zi − zj = pi − pj −M , where M ≡ max
K⊆C\ni

{V (]K)−PK} −

max
K′⊆C\nj

{V (]K ′)−PK′}. Hence zi = p̂ −M . However, since nj ≥ ni and pj < p̂, M must

be positive by the fact that V (k) strictly increases in k. Therefore zi < p̂. �

Next, we discuss a special class of games of interest with competition margin zi = wi

in equilibrium for every pool i. Let w(k,∆k) ≡ V (k) − V (k − ∆k) for k > ∆k > 0;

i.e., w(k,∆k) is the marginal contribution of ∆k patents to a pool of size k (after the size

expands). Denote by wi ≡ w(n, ni) the marginal value of pool i to the complete pool. It

is easy to see that wi increases in ni. The following proposition provides a characterization

in terms of this class of games.

Proposition A2. As described by Proposition A1, let p be an equilibrium price profile of

Γ(C) under some pool structure C. Then zi = wi for i = 1, ...,m if and only if p satisfies

C\ni ∈ arg max
J⊆C\ni

{V (]J)−PJ} for i = 1, ...,m. (7)

This condition holds for all the C’s with ]C = n, if V (·) satisfies

w(n,∆k) ≤ w(k,∆k) for any k ≤ n and any ∆k < k. (8)
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Proof: By definition,

zi = V (n)−P−i − max
J⊆C\ni

{V (]J)−PJ} ≤ V (n)−P−i − {V (n− ni)−P−i} = wi.

The equality holds when maxJ⊆C\ni {V (]J)−PJ} = V (n− ni)−P−i.
For every C with ]C = n, condition (7) is equivalent to that

V (n− ni)−P−i ≥ V (]J)−PJ for any J ⊆ C\ni and any ni ∈ C.

Fix C, ni and J ⊆ C\ni. Let C\ni\J ≡ {nk1 , nk2 , ..., nkm}. If condition (8) holds, we have

V (n− ni)− V (]J) = w(]J + nk1 , nk1) + w(]J + nk1 + nk2 , nk2) + ...+ w(n− ni, nkm)

≥
∑

nj∈C\ni\J

wj ≥ P−i −PJ .

The first inequality comes from condition (8), and the second the fact that zi ≤ wi for every

i, and p̂ ≤ zj for j = m′ + 1, ...,m [condition (c) in Proposition A1]. �

Condition (7) is a suffi cient and necessary condition for zi = wi in equilibrium for every

pool i. A drawback seems to be that this condition is in terms of not only V (·) but also
the equilibrium per se. To ensure that it can be satisfied under some circumstances, a

suffi cient condition (8), which is only based on V (·), follows. Condition (8) is weaker than,
say, the condition of concavity of V (·) (Lerner and Tirole 2004). It does not require that
V (·) have nonincreasing differences across all the patents, but that the terminal difference
be the smallest. For example, consider a function V (·) with V (1) = 1, V (2) = 2, V (3) = 5

and V (4) = 6. Obviously, V (·) is not concave, while it satisfies condition (8): w(4,∆k) ≤
w(k,∆k) for any ∆k < k ≤ 4. Hence every Γ(C) with ]C = 4 has an equilibrium in which

wi prevails as competition margins for every pool i.

Appendix B

Proof of Proposition 1: (We suppress r(p−i) and z(p−i) as ri and zi.)

Step 1. First notice that there are three possible cases in terms of the number m′ of the

pools strictly binded by the competition margin [case m.m′) with m = 2 and m′ = 0, 1 or

2].

Case 2.0) Let the equilibrium price profile be (p̂)2. Then by equation (2), p̂ = x
3
. Also,

by equation (4), z1 = x− p̂− (v − p̂) = x− v, and z2 = x− p̂− (u− p̂) = x− u.
Case 2.1) Let the equilibrium price profile be (z1, p̂) with z1 < p̂. (If pool 1 is weakly

binded by the competition margin (r1 = z1), then by Proposition A1, z1 = p̂ and we end
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up in the first case). By equation (4), z1 = x − p̂ − (v − p̂) = x − v, and by equation (2),
p̂ = x−z1

2
= 1

2
v. Also, by equation (4), z2 = x− z1 − (u− z1) = x− u.

Case 2.2) Let the equilibrium price profile be (z1, z2). Then z1 = x−z2−(v − z2) = x−v,
and z2 = x− z1 − (u− z1) = x− u.
Step 2. Next we show that the following three statements are true.

(a) “If (a) is satisfied, case 2.0) is the unique equilibrium.”

(Existence) First we show that case 2.0) is an equilibrium. This is justified by the fact

that z1 − p̂ = x− v − x
3

= 1
3

(2x− 3v) ≥ 0 by (a). Also z2 > z1 ≥ p̂.

(Uniqueness) Next we show that case 2.0) is the unique equilibrium. Assume by

absurdity that case 2.1) occurs. By equation (3), r1 = 1
2

(x− p̂) = 1
4

(2x− v). Then

r1 − z1 = 1
4

(3v − 2x) ≤ 0 by (a). Hence pool 1 is not strictly binded by the competition

margin (r1 > z1), contradicting our assumption. Assume by absurdity that case 2.2) occurs.

By equation (3), r2 = 1
2

(x− z1) = 1
2
v. Then r2 − z2 = 1

2
(2u+ v − 2x) < 1

2
(3v − 2x) ≤ 0

by (a). Hence pool 2 is binded by the demand margin, contradicting our assumption.

(b) “If (b) is satisfied, case 2.1) is the unique equilibrium.”

(Existence) By equation (3), r1 = 1
2

(x− p̂) = 1
4

(2x− v) > z1 = x− v, by x < 3
2
v. Also,

p̂ = 1
2
v ≤ z2 = x− u, by x ≥ u+ 1

2
v.

(Uniqueness) Assume by absurdity that case 2.0) occurs. Then p̂− z1 = x
3
− (x− v) =

1
3

(3v − 2x) > 0 by (b). Hence pool 1 is strictly binded by the competition margin, contra-

dicting our assumption. Assume by absurdity that case 2.2) occurs. Then by equation (3),

r2 = 1
2

(x− z1) = 1
2

(x− (x− v)) = 1
2
v. Then r2 − z2 = 1

2
v − (x− u) = 1

2
(2u+ v − 2x) ≤ 0

by (b). Hence pool 2 is binded by the demand margin, contradicting our assumption.

(c) “If (c) is satisfied, case 2.2) is the unique equilibrium.”

(Existence) By equation (3), r2 = 1
2

(x− z1) = 1
2
v > z2 = x− u, by (c). Also, r1 − z1 =

1
2

(x− z2)− z1 = 1
2

(u− 2x+ 2v) > 1
2

(2u− 2x+ v) > 0 by (c).

(Uniqueness) Assume by absurdity that case 2.0) occurs. Then p̂− z1 = 1
3

(3v − 2x) >
1
3

(2u+ v − 2x) > 0 by (c). Hence pool 1 is strictly binded by the competition mar-

gin, contradicting our assumption. Assume by absurdity that case 2.1) occurs. Then

by equation (3), r2 = 1
2

(x− z1) = 1
2

(x− (x− v)) = 1
2
v. Then r2 − z2 = 1

2
v − (x− u) =

1
2

(2u+ v − 2x) > 0 by (c). Hence pool 2 is strictly binded by the competition margin,

contradicting our assumption.

Step 3. The rest of the calculation is summarized in the following table:

If (a) x ≥ 3
2
v (b) u+ 1

2
v ≤ x < 3

2
v (c) x < u+ 1

2
v

p (p̂)2 =
(
x
3

)
2

(z, p̂) =
(
x− v, v

2

)
(z1, z2) = (x− v, x− u)

P 2
3
x 2x−v

2
2x− v − u

D (P) 1
3∆
x v

2∆
v+u−x

∆

π
(
x2

9∆
, x2

18∆

) (
v

2∆
(x− v) , v

2

8∆

)
v+u−x

∆

(
x− v, x−u

2

)
.

�
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Proof of Proposition 2: Step 1. First notice that there are four possible cases in terms
of the number m′ of the pools strictly binded by the competition margin. Furthermore, we

show that case 3.1) does not exist under any circumstances.

Case 3.0) Let the equilibrium price profile be (p̂)3. By equation (2), p̂ = x
4
, and by

equation (4), z = V (3)− 2p̂−max
k=1,2

{V (k)− kp̂}.

Case 3.1) Let the equilibrium price profile be (z, p̂, p̂) with z < p̂. Then p̂ = 1
3

(x− z),

and z = V (3) − 2p̂ −max
k=1,2

{V (k)− kp̂}. Assume by absurdity that this case exists. Then

z2 = x− z − p̂−max {u− z, v − z − p̂}. Then z − z2 = −p̂+ z −max
k=1,2

{
V (k) + θ − kp̂

}
+

max {u− z, v − z − p̂} = 0, whenever u > v − p̂ or u ≤ v − p̂. This implies that z ≥ p̂,

contradicting our assumption.

Case 3.2) Without loss of generality, let the equilibrium price profile be (z1, z2, p̂) with

z1 ≤ z2 < p̂. By equation (2), p̂ = 1
2

(x− z1 − z2), z1 = x−z2−p̂−max {u− z2, v − z2 − p̂},
and z2 = x − z1 − p̂ − max {u− z1, v − z1 − p̂}. (Notice that u − p̂ < u − z2 ≤ u − z1.)

Assume by absurdity that u ≤ v − p̂, then z1 = z2 = x − v, and z3 = x − z1 − z2 −
max {u− z1, v − z1 − z2} = x− z1− z2− (v − z1 − z2) = x− v. z2 = z3 implies that p̂ ≤ z2,

contradicting our assumption. Hence u > v − p̂, and z1 = z2 = x− u− p̂.
If x ≤ v + p̂, then u ≤ v − z2 and z3 = x − v. From x − v ≤ p̂, we have p̂ ≥ z3, and

hence p̂ = z3 = x−v, z1 = z2 = v−u. By equation (2), p̂ = 1
2

(x− 2v + 2u). Hence it must

be that x = 2u. Also, from z2 < p̂, we have v − u < x− v (strict convexity). If x > v + p̂,

then u > v − z2 and z3 = x − u − z2 = p̂. By equation (2), p̂ = 1
2

(x− z1 − z2). Hence it

must be that x = 2u. Also, from x− v > p̂ and z2 > v − u, we have x− v > v − u (strict
convexity). Therefore, if case 3.2) exists, V (·) must be strictly convex, x = 2u, and the

equilibrium price profile is (z, z, p̂) with z < p̂ = z3.

Case 3.3) Without loss of generality, let the equilibrium price profile be (z1, z2, z3) with

z1 ≤ z2 ≤ z3. Then z1 = x − z2 − z3 − max {u− z2, v − z2 − z3}, z2 = x − z1 − z3 −
max {u− z1, v − z1 − z3}, and z3 = x − z1 − z2 − max {u− z1, v − z1 − z2}. Obviously,
z1 = z2, and let the equilibrium price profile be (z, z, z3) with z ≤ z3.

Step 2. Next we show that the following three statements are true.

(d+f) “If (d) and (f) are satisfied, case 3.0) is the unique equilibrium.”

(Existence) To show p̂ ≤ z, it suffi ces to show that p̂ ≤ x − 2p̂ − {u− p̂} and p̂ ≤
x− 2p̂− {v − 2p̂}, which are guaranteed by (d) and (f) respectively.
(Uniqueness) It is obvious that case 3.2) does not occur, since x 6= 2u. Assume by

absurdity that case 3.3) occurs. If u > v − z3, z = x − u − z3. Then by equation (3)

r3 = 1
2

(x− 2z) = 1
2

(x− 2 (x− u− z3)) = 1
2

(2u− x+ 2z3). From r3 > z3, we have x < 2u,

contradicting (d). If u ≤ v − z3 (≤ v − z), z = z3 = x − v. Then by equation (3) r3 =
1
2

(x− 2z) = 1
2

(x− 2 (x− v)) = 1
2

(2v − x). From r3 > z3, we have (g) contradicting (f).

(concavity+g) “If (concavity) and (g) are satisfied, case 3.3) with z = z3 = x− v is the
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unique equilibrium.”

(Existence) By Proposition A2, if case 3.3) occurs, z = z3 = x − v because of the

concavity of V (·). Also, by equation (3), r = 1
2

(x− 2z) = 1
2

(2v − x) > z = x− v by (g).
(Uniqueness) It is obvious that case 3.2) does not occur because of the concavity of V (·).

Assume by absurdity that case 3.0) occurs. Then z = x − 2p̂ − max
k=1,2

{
V (k) + θ − kp̂

}
≤

x− v < p̂ = x
4
by (g), contradicting our assumption.

(e+convexity) “If (e) and (convexity) are satisfied, every equilibrium price profile is in

the form of (z, z, x− u− z) with z ∈
[
v − u, x−u

2

]
.”

(Existence) z3 = x − 2z− max
k=1,2

{
V (k) + θ − kz

}
, and by z ≥ v − u, z3 = x − 2z−

{u− z} = x − u − z. Also, by z ≤ x−u
2

(convexity)
≤ x − v, u − z ≥ v − (x− u) and hence

z1 = x − (x− u) −max {u− z, v − (x− u)} = z. By equation (3), r1 = 1
2

(x− (x− u)) =

1
2
u
(e)
≥ 1

2
(x− u) ≥ z. Also, r3 = 1

2
(x− 2z), and by (e), r3 − (x− u− z) = u − 1

2
x ≥ 0.

[Notice that if inequality (e) is strictly satisfied, it is case 3.3). If (e) is satisfied in equality,

it is case 3.0) if z = x−u
2
, and case 3.2) otherwise.]

(Any other price profile cannot be the equilibrium.) Assume by absurdity that the

equilibrium price profile is (p, p, p3) with p < v − u. (Notice that in all the possible cases,

pools 1 and 2 charge the same price.) If case 3.0) occurs, we have p = p3 = x
4
< v−u

(convexity)
≤

x−u
2
, and hence x > 2u, contradicting (e). If case 3.2) or 3.3) occurs, by p < v − u,

p3 = x−2p−max
k=1,2

{
V (k) + θ − kp

}
= x−v. Then p = x−p−p3−max {u− p, v − p− p3} =

v−p−max {u− p, 2v − x− p} (convexity)= v−p−(u− p) = v−u, contradicting our assumption
of p < v − u.
Assume by absurdity that the equilibrium price profile is (p, p, p3) with p > x−u

2
. If

case 3.0) occurs, we have p = p3 = x
4
> x−u

2

(convexity)
≥ v − u and hence z = x − 2p −

max
k=1,2

{
V (k) + θ − kp

}
= x−u−p < x−u− x−u

2
= x−u

2
< p, contradicting our assumption of

z ≥ p. If case 3.2) or 3.3) occurs, by p > x−u
2
≥ v−u, p3 = x−2p− max

k=1,2

{
V (k) + θ − kp

}
=

x− u− p < x−u
2
< p, contradicting our assumption of p3 ≥ p.

Step 3. The rest of the calculation is summarized in the following table:

If (d) x > 2u, (concavity) x < 2v − u (e) x ≤ 2u,

(f) x ≥ 4
3
v (g) x < 4

3
v (convexity) x ≥ 2v − u

p (p̂)3 =
(
x
4

)
3

(z)3 = (x− v)3 (z, z, x− u− z) , z ∈
[
v − u, x−u

2

]
P 3

4
x 3 (x− v) x− u+ z

D (P) 1
4∆
x 3v−2x

∆
u−z
∆

π
(

1
16∆

x2
)

3

(
3v−2x

∆
(x− v)

)
3

u−z
∆

(z, z, x− u− z).

�

Proof of Proposition 3. It suffi ces to show the sign of x2

12∆
− v

2∆
(x− v). Let x2

12∆
−
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v
2∆

(x− v) ≡ 1
12∆

hb1(x), where

hb1(x) = x2 − 6vx+ 6v2.

dhb1
dx

= 2 (x− 3v) < 0 by x < 3
2
v. Hence hb1(x) is strictly decreasing in

[
4
3
v, 3

2
v
]
. Therefore,

together with hb1
(

4
3
v
)
< 0, hb1(x) < 0. �

Proof of Proposition 4: (b+concavity+g) Step I. Let v2

8∆
− 3v−2x

∆
(x− v) ≡ 1

8∆
gbg(x),

where

gbg(x) = v2 + 8 (2x− 3v) (x− v) .

gbg(x) obtains its minimum at x = 5
4
v, and gbg(5

4
v) = 0. Hence gbg(x) ≥ 0 and {1, 2} is an

EPS.

Step III. (x < x2) When x < x2, x2

12∆
< v2

8∆
and {2} has the incentive to defect.

When x ≥ x2, we investigate the part of {1}. The solution to hb1 (x) = 0 is x = x3.

(x2 ≤ x ≤ x3) When x ≤ x3, hb1 (x) ≥ 0. (x > x3) When x > x3, hb1 (x) < 0.

(c+concavity+g) Step I. We need to check the sign of 1
2∆

(v + u− x) (x− u)− 1
∆

(3v − 2x) (x− v),

which equals to 1
2∆

(x− 2v + u) (3x− 3v − u). By concavity, x−2v+u < 0. Next we show

that x ≤ 1
3
u + v, and hence {1, 2} is an EPS. Assume by absurdity that x > 1

3
u + v, then

1
3
u + v < u + 1

2
v by (c), and 1

3
u + v < 2v − u by concavity. The former inequality implies

that v < 4
3
u, and the latter v > 4

3
u.

Step III. First we show that {1} has no incentive to break away from the complete pool.
Let x2

12∆
− v+u−x

∆
(x− v) ≡ 1

12∆
hc1 (x), where

hc1 (x) = 13x2 − (24v + 12u)x+ 12v2 + 12uv.

The solution to hc1 (x) = 0, when existing41, is

x =
1

13

(
6u+ 12v ± 2

√
3γ
)
, where γ ≡ −v2 − uv + 3u2

if γ ≥ 0, i.e., v ≤
√

13−1
2

u. Then it suffi ces to show that 1
13

(
6u+ 12v − 2

√
3γ
)
is larger than

all the x’s satisfying (c+concavity+g). This is justified by the fact that

1

13

(
6u+ 12v − 2

√
3γ
)
≥ 2v − u⇔ 13 (4v − 5u)2 ≥ 0.

Next we investigate the part of {2}. Let x2

12∆
− 1

2∆
(v + u− x) (x− u) ≡ 1

12∆
hc2 (x),

where

hc2 (x) = 7x2 − (6v + 12u)x+ 6uv + 6u2.

41When the real solution to hc1 (x) = 0 does not exist, i.e., γ < 0, then hc1 (x) > 0 trivially.
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The solution to hc2 (x) = 0 is x = x4 or x5, if δ ≥ 0, i.e., v ≥
√

7+1
3
u.

(x4 < x < x5) When x4 < x < x5, hc2 (x) < 0. (x ≤ x4 or x ≥ x5) Otherwise,

hc2 (x) ≥ 0. �

Proof of Proposition 5: (a+e+convexity) First notice that to make the set of x’s
satisfying (a+e+convexity) nonempty, we must have 3

2
v ≤ 2u and 2v − u ≤ 2u, implying

that v ≤ 4
3
u. This, in turn, implies that 3

2
v > 2v − u. So (a+e+convexity) is equivalent to

3
2
v ≤ x ≤ 2u.

Step I. Let x2

18∆
− (3u−x)(x−u)

4∆
≡ 1

36∆
gae (x), where

gae (x) ≡ 11x2 − 36ux+ 27u2.

The solution to gae (x) = 0 is x = 18±3
√

3
11

u, one smaller than 3
2
v and one larger than 2u. So

gae (x) < 0 and {1, 2} is not an EPS. We proceed to step II.
(c+e+convexity) First notice that to make the set of x’s satisfying (c+e+convexity)

nonempty, we must have 2v − u ≤ 2u and 2v − u < u+ 1
2
v, implying that v < 4

3
u.

Step I. (v+u−x)(x−u)
2∆

− (3u−x)(x−u)
4∆

= 1
4∆

(2v − u− x) (x− u) ≤ 0 by convexity, with equal-

ity when x = 2v − u. Notice that when x = 2v − u,

(v + u− x) (x− v)

∆
=

(v + u− x) (x− u)

2∆
=

(3u− x) (x− u)

4∆
,

so it is suffi cient to consider the case with (v+u−x)(x−u)
2∆

< (3u−x)(x−u)
4∆

. Then {1, 2} is not an
EPS, and we proceed to step II.

(b+e+convexity) First notice that when 4
3
u ≤ v ≤ 1√

3−1
u, x3 and x6 satisfy (b+e+convexity).

This is guaranteed by

2v − u ≤ x6 ⇔ (3v − 4u)2 ≥ 0, u+
1

2
v ≤ x6 ⇔ v ≥ 4

3
u, x6 <

3

2
v ⇐ v ≥ 4

3
u; and

2v − u ≤ x3 ⇔ v ≤ 1√
3− 1

u, x3 ≤ 2u⇔ v ≤ 2

3−
√

3
u, u+

1

2
v ≤ x3 ⇔ v ≥ 1

5/2−
√

3
u.

Step I. Let v2

8∆
− (3u−x)(x−u)

4∆
≡ 1

8∆
gbe(x), where

gbe(x) ≡ 2x2 − 8ux+ v2 + 6u2.

The solution to gbe(x) = 0 is x = x6 if 2u2 − v2 > 0, i.e., v <
√

2u.

(x > x6) When x > x6, gbe(x) < 0 and we proceed to step II. (x ≤ x6) Otherwise we

proceed to step III.

Step III. First we show that {2} has no incentive to break away from the complete pool.
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By the following contradicting facts

u+
1

2
v ≤

√
3

2
v ⇔ v ≥ 1√

3/2− 1/2
u, and 2v − u ≤

√
3

2
v ⇔ v ≤ 1

2−
√

3/2
u,

we have
√

3
2
v < max

{
u+ 1

2
v, 2v − u

}
and hence x >

√
3
2
v. Then

x2

12∆
− v2

8∆
=

1

12∆

[
x+

√
3

2
v

][
x−

√
3

2
v

]
> 0.

Next we investigate the part of {1}. (x ≤ x3) As before, when x ≤ x3, hb1 (x) ≥ 0.

(x > x3) When x > x3, hb1 (x) < 0. �

Proof of Proposition 6: (First part) If x > x1, only the cases (a/b+d+f) and (a/b/c+e+convexity)

can happen. Then use Propositions 3 and 5. If (a), only the cases (a+d+f) and (a+e+convexity)

can happen.

(Second part) If v < 4
3
u, only the cases (a+d+f), (c+concavity+g) and (a/b/c+e+convexity)

can happen. Use Propositions 3 and 5, and the fact that if v < 4
3
u, then x6 < u + 1

2
v and

gbe(x) < 0. So {1, 2} is not an EPS and {3} is the coarsest EPS. Furthermore, if v <
√

7+1
3
u,

by the proof of Proposition 4 about the case (c+concavity+g), δ < 0 and hc2 (x) > 0.

Therefore the coarsest EPS is {3}. �

Proof of Proposition 7: (a/b+d+f) Algebra tells that the total price is the highest in
the fragmented structure among all the three pool structures. By Proposition 3, {1, 1, 1} is
never the coarsest EPS.

(a+e+convexity) Algebra tells that the total price is the lowest in the complete pool,
which is always the coarsest EPS by Proposition 5.

(b+e+convexity) When v > 4
3
u, 3u − v < u + 1

2
v and hence x > 3u − v. Then

algebra tells that the total price is the highest in the fragmented structure, which is never

the coarsest EPS by Proposition 5.

(b+concavity+g)When v > 10
7
u, the proof is summarized below. H, L, M denote the

high, low, and medium total price. The asterisk means that the pool structure in question

is the coarsest EPS (under some condition which follows). When
(

4
3
u <

)
v ≤ 10

7
u, a similar

method applies and is omitted.

{3} {1, 2} {1, 1, 1}
x < 6

5
v (⇒ x < x2) M H (*) L

x ∈
(

6
5
v, 5

4
v
)

L (*x ≥ x2) H (*x < x2) M

x > 5
4
v (⇒ x > x2) L (*) M (*) H
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(c+e+convexity) It can be shown that when x > 3
2
u, the complete pool charges the

lowest total price. Otherwise, the fragmented structure charges the lowest. By Proposition

5, the complete pool is always the coarsest EPS.

(c+concavity+g) A similar method applies as in (b+concavity+g) and is omitted. �

Proof of Proposition 8: It suffi ces to show that {A, aa} is always an EPS in all the
cases with (e+convexity) (⇒ {a, a, A} is never the coarsest EPS), and then (under some
circumstance) the complete pool is blocked by {A, aa}.
(a+e+convexity) Let x2

18∆
− (2u−v)(v−u)

∆
≡ 1

18∆
g1 (x), where

g1 (x) ≡ x2 + 18v2 − 54uv + 36u2.

The solution to g1 (x) = 0 is

x = 3
√

2ζ, where ζ ≡ (2u− v)(v − u) > 0 by (e).

Since 3
√

2ζ ≤ 3
2
v,42 x > 3

√
2ζ by (a) and hence g1 (x) ≥ 0. So {A, aa} is an EPS.

Next we check whether {aaA} is blocked by {A, aa}. Obviously, A will defect.
(b+e+convexity) By the fact that

v2

8∆
− (2u− v) (v − u)

∆
=

1

8∆
(3v − 4u)2 ≥ 0,

{A, aa} is an EPS. Then by Proposition 5, A will defect from the complete pool if x3 <

x < x6.

(c+e+convexity) By convexity, 2v − u − x ≤ 0. By v < 4
3
u, 3u − v > u + 1

2
v, and

hence x < 3u− v by (c). Then

(v + u− x) (x− u)

2∆
− (2u− v) (v − u)

∆
=

1

2∆
(2v − u− x)(x+ v − 3u) ≥ 0.

So {A, aa} is an EPS.
Next, from the proof of Proposition 4, we know that x5 ≤ 2v − u. Then by convexity,

x ≥ x5 and hence hc2 (x) ≥ 0. So {aa} will not defect.
We still need to check the possibility ofA’s defection. Notice that when x > 1

13

(
6u+ 12v − 2

√
3γ
)
,

hc1 (x) < 0 and A will defect from the complete pool. Therefore it suffi ces to show that it

is possible that 1
13

(
6u+ 12v − 2

√
3γ
)
satisfies (c+e+convexity), and

1

13

(
6u+ 12v + 2

√
3γ
)
> u+

1

2
v.

42This is guaranteed by the fact that 3
√

2ζ ≤ 3
2v ⇔ (3v − 4u)2 ≥ 0.
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These are justified by

1

13

(
6u+ 12v − 2

√
3γ
)

< u+
1

2
v ⇔ v <

4
√

3 + 10

13
u,

1

13

(
6u+ 12v − 2

√
3γ
)
≤ 2u⇔

√
3γ ≥ 0 > 6v − 10u,

1

13

(
6u+ 12v − 2

√
3γ
)
≥ 2v − u⇔ 13 (4v − 5u)2 ≥ 0,

1

13

(
6u+ 12v + 2

√
3γ
)

> u+
1

2
v ⇔ v <

4
√

3 + 10

13
u. �

Proof of Proposition 9: We introduce some notations. Let

α ≡ x2 − 3ux+ 3u2( > 0),

β ≡ 9u2 − 2x2( > 0 by (e)),

κ ≡ 2v2 − 7uv + 6u2( ≥ 0 if v ≤ 3

2
u),

z ≡ u

2
−
√
β

6
, and z ≡ x

2
−
√

3α

3
.

Step 1. When z ∈ (−∞, z), x2

12∆
< (u−z)(x−u−z)

∆
, and (6) holds. To make (−∞, z) ∩[

v − u, x−u
2

]
nonempty, we must have z > v − u, implying that

x ∈
(
−6v + 12u− 2

√
6κ,−6v + 12u+ 2

√
6κ
)
. (9)

This is guaranteed by the fact that
[

3
2
v, 2u

]
((9), which is in turn guaranteed by v < 4

3
u

(c.f., Proof of Proposition 5). Also, we can show that z ≤ x−u
2
.43 Thus, {z|(6) holds} =

[v − u, z) is nonempty.

Step 2. When z ∈
(
z, u

2
+
√
β

6

)
, x2

18∆
< (u−z)z

∆
, and (5) holds. We can show that

v − u ≤ z < z < u
2

+
√
β

6
.44 Hence

[v − u, z) ∩
(
z,
u

2
+

√
β

6

)
= (z, z) .

Step 3. Notice that {a, aA} is not an EPS no matter whether (5) holds or not. When
z ∈ [v − u, z], (5) does not hold and hence {A, aa} is an EPS. Obviously, it is the coarsest
one. When z ∈

[
z, x−u

2

]
⊂
(
z, u

2
+
√
β

6

)
, (5) holds and hence {A, aa} is not an EPS. Thus,

{aaA} is the coarsest EPS since (6) does not hold. �
43This inequality is equivalent to (2x− 3u)2 ≥ 0.
44The first inequality is guaranteed by (a) and the fact that 3

2v ≥ 3
√

2
√
−v2 + 3uv − 2u2. The second is

guaranteed by (a) and (e). And the last is guaranteed by (e).
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Proof of Proposition 10: To make x−u+z < x
2
, we need z < 2u−x

2
≡ z∗. When x < 18

11
u,

z∗ > z and (z, z∗) 6= ∅; otherwise, z∗ ≤ z and any z ∈ (z, z) is larger than z∗. (By Proof

of Proposition 5, (a+e+convexity) is equivalent to x ∈
[

3
2
v, 2u

]
. Note that when v < 12

11
u,

18
11
u ∈

[
3
2
v, 2u

]
.) �
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