Exclusive Dealing Under Asymmetric Information about Entry Barriers

Liliane Giardino-Karlinger

LUISS (Rome)

BECCLE Inaugural Conference Bergen, 23 - 24 April, 2015

- Exclusive Dealing (ED): a contractual commitment for a buyer (i.e. retail or wholesale outlet) to source their requirements exclusively from a single supplier
- ED can have exclusionary effects:
 - ED allows dominant incumbent to play divide-and-conquer strategies among multiple buyers, thus preempting potential entrants who cannot reach a critical mass of buyers to make entry viable...
 - Rasmusen et al (AER, 1991), Segal and Whinston (AER, 2000)

1. Introduction cont'd

- **High informational burden**: Literature generally assumes that **entry barriers are perfectly observable to all buyers**
- Is this assumption realistic?
- This paper: Allow for entry barriers to be observable only to the incumbent supplier, but not to buyers.
 - New rationale for ED: Supplier may (or may not) use ED contracts to signal entrant type.
- Result: Absent signaling (i.e. at the pooling equilibria), ED is an even more powerful tool to exclude more efficient entrants!

5. Future Work

Recent surge of interest in role of informational frictions in exclusion through ED (or market-share clauses in general):

- Chen and Shaffer (RAND, 2014)
- Miklos-Thal and Shaffer (2014)
- Johnson (2012)
- Majumdar and Shaffer (JEMS, 2009)
- Calzolari and Denicolò (2014)
- Nocke and Peitz (2015)
- Ide et al (2015)
- Yehezkel (RAND, 2008)

2.1. Basic Ingredients

...analogous to Segal and Whinston (AER, 2000):

- **Upstream:** incumbent (1) and potential entrant (E), produce homogeneous good
- E is more efficient at producing good: $c_E < c_I$, and $\triangle = c_I - c_F$
- **Downstream:** 2 identical buyers, B1 and B2
- Buyers have independent, downward-sloping demand **functions** q(p) (i.e. no competitive spillovers among buyers as in Fumagalli and Motta, AER 2006)
 - Unique **monopoly price** $p^m = \arg \max_p (p c_l) q(p)$
 - ... yields monopoly profits $\pi = (p^m c_l) q(p^m)$

Figure 1: Timeline

$$t = 1a$$

$$t = 1b$$

$$t = 2$$

1 offers observable ED contract(s) against compensation {x}

Buyer(s) decide(s) whether to accept or reject: S = 0, 1, 2

E observes S and decides on entry

Active firms set prices

2.1. Basic Ingredients cont'd

- ED contracts **cannot specify price** at which transactions will occur in t = 3 (not innocuous: Chen and Shaffer, 2014)
- In t=3, I can price-discriminate between committed buyers (those who signed ED in t=1) and free buyers: $\{p_s, p_f\}$
- If no entry occurred:
 - I charges all buyers p^m and makes profits π on each buyer
- If entry occurred:
 - I charges committed buyers $p_s = p^m$
 - E can only make offers to free buyers:
 - Bertrand competition for free buyers: $p_E = c_I$

• Committed buyer **loses surplus** $x^* = CS(c_l) - CS(p^m)$

- Because of **deadweight loss**, we have that $x^* > \pi$
 - ...A single buyer will require at least compensation $x = x^*$ to sign ED contract (...**Chicago critique of ED**)
- We assume $x^* < 2\pi$
 - If E must serve both buyers for entry to be feasible, then divide-and-conquer strategy can exclude E (...Naked Exclusion)

2.3. Asymmetric Info on Entry Barriers

... Novelty of this paper: **Information structure**

- Entrants come in **two types**: "weak" and "strong"
 - "weak" E needs **both buyers** to cover its entry costs: $F \in (\triangle q(c_i), 2\triangle q(c_i)]$
 - "strong" *E* needs **only one buyer** to cover its entry costs: $F \in (0, \triangle q(c_I)]$
- Assumption: While ED contracts are fully observable, E type is **observable only to** *I*, but **not to buyers**.
 - Buyers only know **ex-ante probabilities**: E is weak wp μ , and strong wp $1-\mu$

3. Equilibrium Contracts

 Solution concept under incomplete information: Perfect Bayesian Equilibrium (PBE)

3. Equilibrium Contracts

- Two classes of PBEs:
 - Separating Equilibria: E's type is revealed, I uses ED contracts to signal E's type to buyers
 - Pooling Equilibria: E's type is NOT revealed, I uses ED contracts to exclude, but they don't carry information
- Protocols for the offer game:
 - Simultaneous, non-discriminatory offers $(x_i = x_i)$
 - Simultaneous, discriminatory offers (i.e. $x_i \neq x_i$)
 - Sequential offers (perfect info)

Figure 2: Separating Equilibria vs. Full Info Benchmark

	Sim. & unif.	Sim. & disc.	Sequential
Incomplete Information	Entry equ'a: $x^s \neq x^w$ $\epsilon [0,x^*]$ Excl.: $S=2$,	E = S entry, E = W excl.; if excl: $S=1$, $x_1 = x^*$,	E = S entry, E = W excl.; if excl: $S=1$, $x_1=x^*$, $x_2=0$
Full Info (SW 2000)	Excl. Equ'a (MC):	$x_2 = 0$ E = S entry or excl (MC); E = W excl.: $S=1, x_1 = x^*,$ $x_2 = 0$ or MC	or v.v. E = S entry (no MC!) E = W excl.; S=1, x ₁ =0, x ₂ =0

	Sim. & unif.	Sim. & disc.	Sequential
Incomplete Information	Both entry and excl.; if excl: $S=2$, $x_1 = x_2 \in$ $[(1-\mu)x^*, \pi]$	NO entry, only excl.; S=2, $x_1 = x_2 \epsilon$ [(1- μ) x^* , x^*]	NO entry, only excl.; S=2, $x_1 = x_2 \epsilon$ $[(1-\mu)x^*, x^*]$
Full Info (SW 2000)	Closest analogue: MC	Closest analogue: MC	Closest analogue: MC

4. Conclusions

 New role for ED contracts: signaling entry barriers to buyers

Separating PBEs:

 Exclusion arises whenever it would under complete info, but is more costly (even if offers can be made sequentially)

Pooling PBEs:

- Exclusion can arise even if entry barriers are zero!
- Exclusion can be next to costless if probability of strong entrant is low enough
- No possibility of entry under Pooling PBEs

...impose less (or more?) structure on out-of-equilibrium beliefs

- ...sustain exclusion through repeated interaction (without exclusivity clause) in the spirit of Asker and Bar-Isaac (AER, 2014)
- ...consider risk-averse buyers
- ...consider coalition-proof equilibria
- ...generalize to N buyers
- ...