Prizes vs Contracts as Incentive for Innovation

Yeon-Koo Che Elisabetta Iossa Patrick Rey

BECCLE - Bergen, April 2015

Che, lossa & Rey ()

Rewarding innovation

BECCLE - Bergen, April 2015 1 / 20

Two aspects

- Ex ante: Encouraging innovation (proposals)
- Ex post: Efficient implementation (of selected projects)

Questions

- Monetary prizes vs contract rights
- Bundling vs unbundling

Practice

Unsolicitated proposals

- Many public authorities do not directly reward unsolicited ideas (U.S) An innovating firm is rewarded only by participating in the tender for implementation, should the authority decide to go ahead.
- Chile, Korea: Grant an advantage at implementation stage Bidding credit in the tender for implementation, bidding support.
- Philippines, India: Swiss challenge system The proposer can counter-match the best offer
- Argentina, South Africa: Best and final offer system The proposer automatically participates in the final round

• Public procurement of innovation: Pure bundling vs full unbundling

- "Pre-commercial procurement" (PCP): The public authority procures R&D activities (up to prototyping and testing), but reserves the right to tender competitively the newly developed products or services.
- "Innovation Partnerships:" Development and production are procured through one single tender (the innovator thus also obtains the contract rights over the production of the innovation).

Che, Iossa & Rey (Columbia, Rome Tor Verg

This paper

- Framework
 - *Ex ante* R&D incentives Innovators invest to generate valuable proposals
 - *Ex post* productive efficiency The buyer decides which project to implement, if any ... in which case multiple contractors compete with the proposer
- Two instruments, contingent on project values
 - Monetary transfers ("prizes")
 - Contract rights (which project, which implementor)
- Two situations
 - Start with single innovator (unsolicited proposals)
 - Extend to multiple innovators (procuring innovation)

Insights

- Absent agency problems at implementation stage: Monetary prize
 - For particularly valuable proposal, and equal to its full value
 - Contractor selected purely on the merits
- Agency problems at implemention stage: Distort contract allocation
 - Intuition: Reward innovation with agency rents
- Single innovator
 - Bias for/against the innovator when project is/is not highly valuable
 - Monetary prize may still be optimal for particularly valuable innovation
- Multiple innovators
 - Project values still affect choice of contractor (similar logic)
 - Project selection can be done ex interim (ahead of implementation) if no interdependence btw project & contractor Otherwise, project selection depends also on (reported) costs
 - At most one prize (still equal to the full expected value of the project) when innovation is particularly valuable / needs to be incentivized

Single innovator (unsolicitated proposals)

- Innovation stage: Firm 1 exerts research effort e
 - Costs c(e), generates a proposal with value v for the buyer

•
$$v$$
 is distributed over $V = [\underline{v}, \overline{v}] \sim \text{density } f(\cdot|e)$
• for $v' > v$, $\frac{f(v'|e)}{f(v|e)}$ increases in e (MLRP)

- The value v is publicly observable and verifiable.
- Implementation stage: *n* potential contractors, including the innovator
 - Each firm *i* faces a cost θ_i , which is privately observed

• distributed over
$$\Theta = [\underline{\theta}, \overline{\theta}] \sim \operatorname{cdf} G_i(\cdot)$$
, density $g_i(\cdot)$

•
$$\underline{\theta} < \overline{\nu}$$
 and $\frac{G_i(\theta_i)}{g_i(\theta_i)}$ increases in θ_i

• If the project is not implemented, all parties obtain zero payoff.

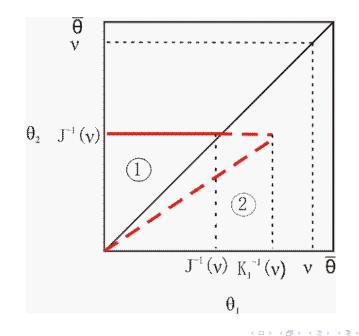
Timing

• The principal offers a direct revelation mechanism:

- whether the project will be implemented, and if so by which firm
- a payment to each firm as functions of the value v and of firms' reports on their costs.
- 2 The innovator chooses e; the value v is realized and observed by all.
- I Firms observe their costs; all parties decide whether to participate.
- Participating firms report their costs; the project is implemented (or not) and transfers are made according to the procedure.

Note: Limited liability (all parties can "opt out" once v is realized)

- No agency problem *ex post* (implementation stage)
 - Suppose that firms' realized costs are publicly observable
 - First-best allocation: implement the project if $v > \min_i \{\theta_i\}$
 - Monetary prize if v is "high enough"
 ... in which case it is equal to the full net value v min_i {θ_i}
- No agency problem *ex ante* (innovation stage)
 - Standard procurement auction ex post (Myerson)
 - Firm i obtains the contract if J_i(θ_i) ≤ min {v, min_{j≠i} J_j(θ_j)}, where J_i(θ_i) represents firm i's virtual cost:

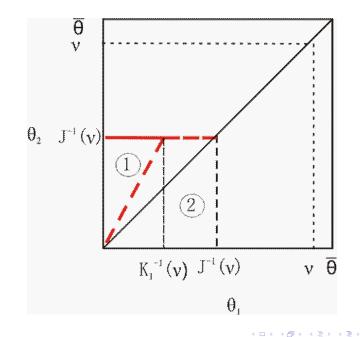

$$J_i(\theta_i) = \theta_i + \frac{G_i(\theta_i)}{g_i(\theta_i)}$$

Optimal mechanism

- A standard auction is optimal only if induces maximal effort
- Otherwise, there exists $\tilde{v} > \underline{v}$ and $\hat{v} > \tilde{v}$ such that:
 - The innovator is favored if $v > \tilde{v}$, handicapped if $v < \tilde{v}$.
 - A bonus can be achieved by giving the innovator a bidding credit in the tendering procedure; additional points in the score of the original proponent's bid, financial support for bidding purposes.
 - Likewise, under-implementation less/more severe than in standard second-best.
 - Full delegation if $v > \hat{v}$ (where $\hat{v} \leq \overline{v}$):
 - The innovator
 - is awarded a monetary prize equal to the full value of the project (net of informational rents)
 - is allocated the contract if $\theta_1 < \min \left\{ v, \min_{i \neq 1} J_i(\theta_i) \right\}$
 - This can be achieved by delegating the procurement to the innovator, for a fixed price equal to the value of the project.

9 / 20

(日) (周) (三) (三)



Che, Iossa & Rey (Columbia, Rome Tor Verg

BECCLE - Bergen, April 2015

10 / 20

æ

æ

Multiple innovators (procuring innovation)

- Innovation stage: every firm k can invest
 - costs $c^k\left(e^k\right)$
 - comes up with a project of value $\mathbf{v}^k \sim f^k(\mathbf{v}^k|\mathbf{e}^k)$
- Implementation stage: If firm *i* implements project *k*, costs $\theta_i + \psi_i^k$
 - $\theta_i \sim \mathcal{G}_i(\cdot)$ is an idiosyncratic shock; privately observed by firm i
 - ψ_i^k captures the interplay btw project & contractor; common knowledge
- Buyer's surplus:

$$w\left(\mathbf{v},\theta\right) = \sum_{k,i} \left[v^{k} x_{i}^{k}\left(\mathbf{v},\theta\right) - t_{i}\left(\mathbf{v},\theta\right) \right]$$

• Firm *i*'s payoff:

$$u_i(\mathbf{v},\theta_i'|\theta_i) = \mathbb{E}_{\theta_{-i}}[t_i(\mathbf{v},\theta_i',\theta_{-i}) - (\theta_i + \psi_i^k)x_i^k(\mathbf{v},\theta_i',\theta_{-i})]$$

- The values of the projects still affect contract assignment
 - Same logic as before: favor good proposers against poor ones
 - For each firm i, $\exists \tilde{v}^i$ such that $K_i(\mathbf{v}, \theta_i) < J_i(\theta_i)$ if and only if $v^i > \tilde{v}^i$
- One firm at most is adjudicated a prize
 - This is the one that yields the highest incentive benefit $\beta^{i}(v^{i}) = \lambda^{i} \frac{f_{e}^{i}(v^{i}|e^{i*})}{f^{i}(v^{i}|e^{i*})}$ (valuable innovation and/or worth incentivizing)
 - The prize winner need not be the firm whose project is implemented

Implications

- If no interdependence project/implementor ($\psi_i^k = \psi_i + \psi^k$), then project selection can be made independently of the choice of the implementor:
 - The project is simply selected on the basis of "net values," $v^k \psi^k$, without regard to whom will implement the chosen project
 - However, full unbundling is not optimal: The realized values ${\bf v}$ affect the choice of contractor
- Otherwise, project selection connected to contract assignment
 - Suppose that firms have a cost advantage on their projects: $\psi_k^k = 0 < \psi_i^k = \bar{\psi}$ for $i \neq k$
 - If for instance $v^1 > v^2$ and $\theta_2 << \theta_1$, the desire to exploit this cost advantage may lead to choosing project 2
 - If $\bar{\psi}$ large enough, "pure bundling;" however, the selection of the project/contractor depends on both **v** and θ .

- Targeted groups such as SMEs: Separation
 - US: The Small Business Innovation Research (SBIR)
 - UK: Small Business Research Initiative (SBRI)
- Our analysis supports such approach
 - SMEs may be unable to compete on large implementation contracts
 - They are at a clear disadvantage in case of bundling
- Consider the following situation:
 - Implementation costs: $\psi_i^k \to \infty$ for *SMEs*, $\psi_i^k = 0$ otherwise
 - Allocation based on:
 - best value v^k (SMEs and non-SMEs)
 - lowest virtual cost $J_i(\mathbf{v}, \theta_i)$ (non-SMEs)
 - Prizes: Only reward for *SMEs* (if any, goes to best value v^k)
- Similar reasoning for university research

THANK YOU!

Che, Iossa & Rey (Columbia, Rome Tor Verg

Rewarding innovation

BECCLE - Bergen, April 2015 1

(日) (周) (三) (三)

16 / 20

æ

Related literature

- Prizes versus property rights to motivate innovation
 - IPRs generate *ex post* distortion (output restriction, market foreclosure) Kremer (1998)
 - But can be an optimal way to motivate *ex ante* innovation Weyl and Tirole (2012)
- Bundling sequential tasks
 - Group lending; Laffont and Rey (2003)
 - Externalities across tasks; Bennett and Iossa (2006)
 - Budget constraints; Schmitz (2013)
- Discrimination vs bidding parity in auctions
 - Discriminating against efficient types Myerson (1981), McAfee and McMillan (1985).
 - Can also encourage bidders to reduce their costs Laffont and Tirole (1988), Bag (1997)

Optimal mechanism (single innovator)

- Notation:
 - $x_i(v, \theta)$: probability that firm *i* implements the contract
 - $t_i(v, \theta)$: transfer to firm i
 - Buyer's surplus: $w(v, \theta) = \sum_{i} [x_i(v, \theta) v t_i(v, \theta)]$
 - Firm i's payoff: $U_i(v, \theta_i) = \mathbb{E}_{\theta_{-i}}[t_i(v, (\theta_i, \theta_{-i}))) \theta_i x_i(v, (\theta_i, \theta_{-i}))]$
- Buyer's problem: $\max_{x,t} \mathbb{E}_{v,\theta} \left[w(v, \theta) \mid e \right]$ subject to:
 - interim individually rationality: $\forall i, v, \theta_i, \qquad U_i(v, \theta_i) \geq 0$
 - interim incentive compatibility:

$$\forall i, v, \theta_i, \theta'_i, \qquad U_i(v, \theta_i) \geq u_i(v, \theta'_i | \theta_i),$$

where $u_i(v, \theta'_i | \theta_i) = \mathbb{E}_{\theta_{-i}} \left[t_i(v, (\theta'_i, \theta_{-i}))) - \theta_i x_i(v, (\theta'_i, \theta_{-i}))) \right]$

- limited liability: $\forall v$, $\mathbb{E}_{\theta}[w(v, \theta)] \geq 0$
- moral hazard: $e \in \arg \max_{\tilde{e}} \left\{ \mathbb{E}_{v,\theta} \left[U_1(v, \theta_1) \mid \tilde{e} \right] c(\tilde{e}) \right\}$

Solution (single innovator)

Let e^* denote the optimal effort and λ the associated Lagrangian multiplier

• Firm *i* obtains the contract if $K_i(v, \theta_i) \leq \min \{v, \min_{j \neq i} K_j(v, \theta_j)\}$, where $K_i(v, \theta_i) = J_i(\theta_i)$ if $i \neq 1$ and

$$\mathcal{K}_{1}(\boldsymbol{v},\boldsymbol{\theta}_{1}) = \mathcal{J}_{1}\left(\boldsymbol{\theta}_{1}\right) - \min\left\{\beta\left(\boldsymbol{v}\right), 1\right\} \frac{\mathcal{G}_{1}(\boldsymbol{\theta}_{1})}{g_{1}(\boldsymbol{\theta}_{1})}, \text{ with } \beta\left(\boldsymbol{v}\right) = \lambda \frac{f_{e}(\boldsymbol{v}|\boldsymbol{e}^{*})}{f(\boldsymbol{v}|\boldsymbol{e}^{*})}.$$

 $\rightarrow \text{ informational rent } \int_{\theta_i}^{\overline{\theta}} \mathbb{E}_{\theta_{-i}} \left[x_i^*(\mathbf{v}, (\theta, \theta_{-i})) \right] d\theta.$

• If in addition $\beta(v) > 1$, then the innovator obtains a monetary prize, equal to the full interim expected net value of the project:

$$\rho^*(\mathbf{v}) = \mathbb{E}_{\theta}\left[\sum_i x_i^*(\mathbf{v}, \theta) \left[\mathbf{v} - J_i(\theta_i)\right]\right] (> 0) \,.$$

Optimal mechanism (multiple innovators)

Given the optimal effort profile \mathbf{e}^* and associated multipliers $\boldsymbol{\lambda}:$

• Firm *i* implements project *k* if $v^k - K_i(\mathbf{v}, \theta_i) - \psi_i^k \ge \max\left\{0, \max_{(l,j) \neq (k,i)} v^l - K_j(\mathbf{v}, \theta_j) - \psi_j^l\right\}$, where

$$\mathcal{K}_{i}(\mathbf{v}, \mathbf{\theta}_{i}) = J_{i}\left(\mathbf{\theta}_{i}
ight) - rac{eta^{i}\left(\mathbf{v}^{i}
ight)}{\max\left\{\max_{k}\left\{eta^{k}\left(\mathbf{v}^{k}
ight)
ight\}, 1
ight\}}rac{G_{i}(\mathbf{ heta}_{i})}{oldsymbol{arsigma}_{i}(\mathbf{ heta}_{i})},$$

- and $\beta^{i}(\mathbf{v}^{i}) = \lambda^{i} \frac{f_{e}^{i}(\mathbf{v}^{i}|e^{i*})}{f^{i}(\mathbf{v}^{i}|e^{i*})}$ denotes firm i "incentive benefit" \rightarrow informational rent $\int_{\theta_{i}}^{\overline{\theta}} \mathbb{E}_{\theta_{-i}} \left[\sum_{k \in N} x_{i}^{k*}(\mathbf{v}, \theta, \theta_{-i}) \right] d\theta.$
- If in addition $\beta^{i}(v^{i}) > \left\{\max_{j \neq i} \beta^{j}(v^{j}), 1\right\}$, then firm *i* obtains a monetary prize equal to the full expected value of its project

$$\rho_i^*(\mathbf{v}) = \mathbb{E}_{\theta} \left[\sum_{k,i} x_i^{k*}(\mathbf{v}, \theta) \left\{ \mathbf{v}^k - J_i(\theta_i) \right\} \right] (>0) \, .$$