horizontal subcontracting and intermittent power generation

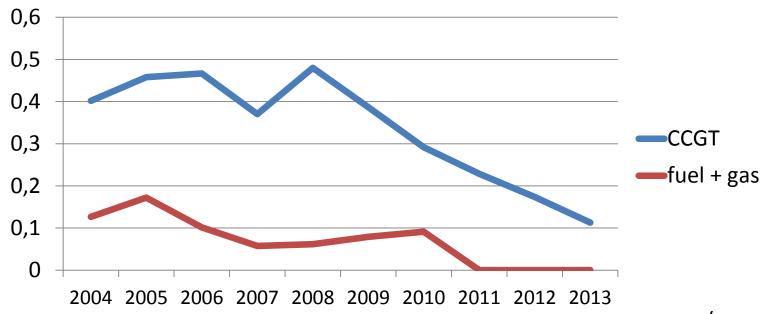
Jan Bouckaert & Geert Van Moer University of Antwerp

Prepared for BECCLE 2015

a paradox

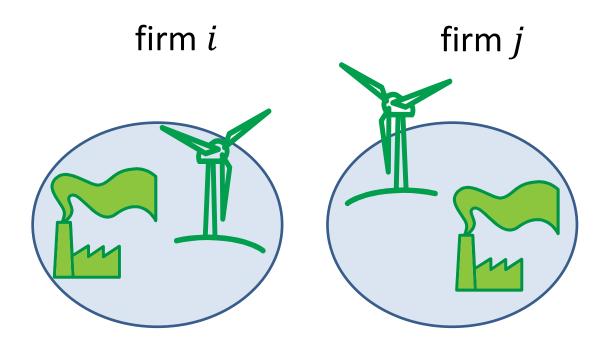
intermittent energy sources

 increase the need for flexible back-up facilities to ensure security of supply

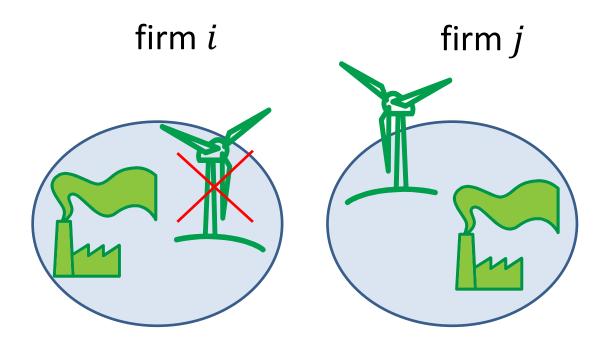

- reduce the #hours of operation (capacity factor) of conventional capacity
- decrease conventional plant profitability

examples

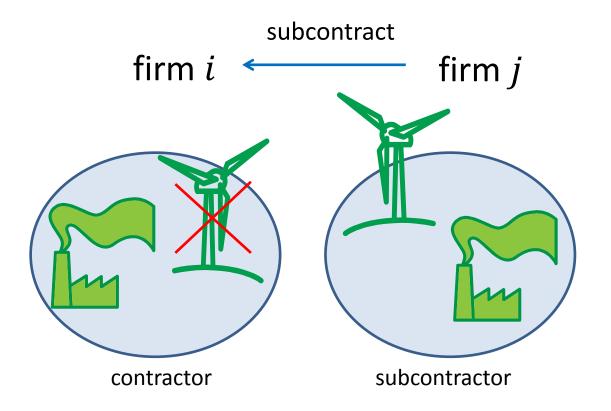
1 MW of wind power removes only 0.2-0.3
 MW of reliable energy sources (US)


examples

- 1 MW of wind power removes only 0.2-0.3
 MW of reliable energy sources (US)
- capacity factors (Spain)



(www.ree.es)


reliable and intermittent sources

reliable and intermittent sources

horizontal subcontracts!

firms gain from outsourcing conventional generation to the wind-abundant rival

what's new?

- literature: Kamien et al. (1989), Spiegel (1993)
 - gains from subcontracting
 - the subcontracting terms alter equilibrium behavior

+

subcontracting literature:

- option contracts to increase industry profits
- idle capacity avoids hold-up by the subcontractor
- welfare comparison: Bertrand, Cournot, collusion power markets literature:
- plant profitability underestimates firms' willingness to invest: conventional plants need not be used to increase profits

the model

- symmetric duopoly
- two production technologies
 - intermittent, zero marginal cost
 - expensive back-up: $TC = 0.5\beta q^2$
- two-stage game
 - stage 1: competition for customers market demand Q = 1 P
 - stage 2: "nature reveals weather conditions "subcontracting

stage 2: nature reveals state

- $\alpha = \text{prob. wind-abundant} \Rightarrow \text{firm-intermittency}$
- $\rho = \text{prob.}$ both firms have identical generation conditions
 - ⇒ system intermittency

stage 2: nature reveals state

- $\alpha = \text{prob. wind-abundant} \Rightarrow \text{firm-intermittency}$
- $ho = ext{prob.}$ both firms have identical generation conditions

⇒ system intermittency

firm j

		w	\overline{w}
firm i	w	$0.5(-1+2\alpha+\rho)$	$0.5(1-\rho)$
	\overline{w}	0.5(1- ho)	$0.5(1-2\alpha+\rho)$

stage 2: gains from subcontracting

Firm j

		w	\overline{w}
	w	0	$TC(q_j)$
Firm i	\overline{w}	$TC(q_i)$	$TC(q_i) + TC(q_j)$ $-2TC(0.5(q_i + q_j))$

stage 2: gains from subcontracting

Firm j

		w	\overline{w}
	w	0	$TC(q_j)$
Firm i	\overline{w}	$TC(q_i)$	$TC(q_i) + TC(q_j)$ $-2TC(0.5(q_i + q_j))$

- 1. efficient subcontracts
- 2. seller appropriates share $0 \le \sigma \le 1$ of the gains from subcontracting

back-up cost parameter β

Firm j

		w	\overline{w}
	w	0	$TC(q_j)$
Firm i	\overline{w}	$TC(q_i)$	$TC(q_i) + TC(q_j)$ $-2TC(0.5(q_i + q_j))$

determines total cost function

- *direct* effect: generation costs if $(\overline{w}, \overline{w})$
- indirect effect: subcontracting costs!

i's profit function

- if i sets the lowest price
 - customer revenues costs without subcontracting

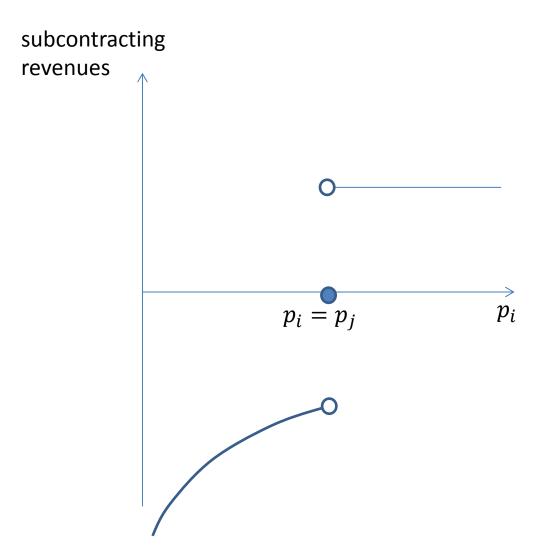
$$(1-p_i)p_i - (1-\alpha)TC(Q(p_i))$$
+

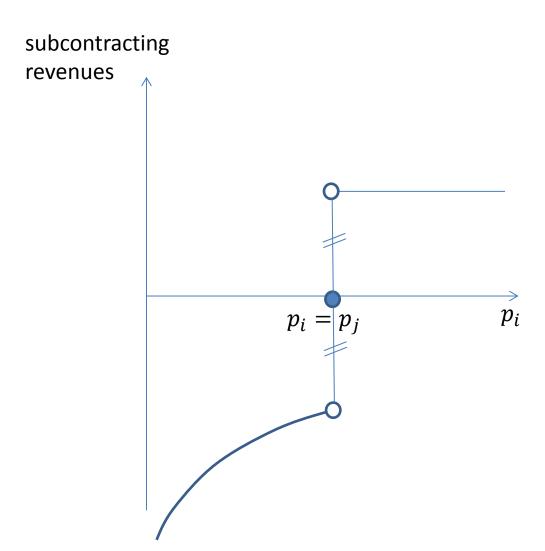
appropriated gains from subcontracting

$$\left(1-\mathbf{\sigma}\right)\left(\frac{1-\rho}{2}TC\left(Q(p_i)\right)+\frac{1-2\alpha+\rho}{2}0.5TC\left(Q(p_i)\right)\right)$$

i's profit function

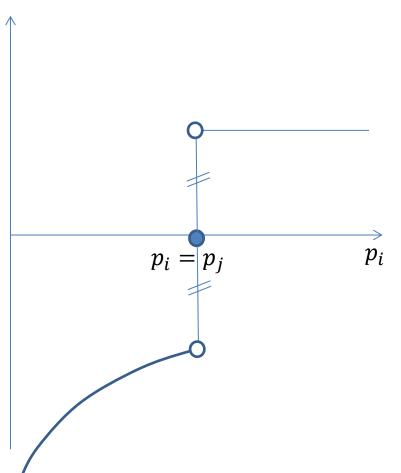
- If rival j sets the lowest price
 - customer revenues costs without subcontracting


0


appropriated gains from subcontracting

$$\sigma \left(\frac{1 - \rho}{2} TC(Q(p_j)) + \frac{1 - 2\alpha + \rho}{2} 0.5 TC(Q(p_j)) \right)$$

subcontracting revenues



subcontracting revenues

subcontracting revenues

subcontracting revenues

 High equilibrium price

 A "bill and keep" system is not equivalent

profit-maximizing subcontracting terms

 are set in a binding "ex ante option contract", after which firms compete

are a device to increase profits

profit-maximizing subcontracting terms

firms

- non-cooperatively set identical $oldsymbol{\sigma}=\sigma_{
 m a}$
- maximize profits s.t. $\sigma_{\rm a} \leq 1$ (option contract must outperform in-house production)
- set $\sigma_a^* = 1$ if back-up is cheap
- charge $\sigma_{\rm a}^*$ < 1 if back-up is expensive: can non-cooperatively implement monopoly profits

numerical example

- let $\rho = 0$ and $\alpha = 0.5$, so that either (\overline{w}, w) or (w, \overline{w})
- industry generation costs are always zero
- if $\beta = 1$ (cheap), then $p^* = \frac{1}{1 + 2/\sigma_0}$
- ideally $p^m = 1/2$ requiring an infeasible $\sigma_a = 2$
- if $\beta = 4$ (expensive), then $p^* = \frac{1}{1 + 1/(2\sigma_a)}$ firms obtain monopoly profits by $\sigma_a^* = 0.5$

investment in idle dispatchable units: a prisoner's dilemma

- from each firm's perspective:
 - willingness to incur a fixed investment cost to install dispatchable units
 - By doing so, they reduce the subcontracting payments made to the rival
 - Overcapacity in power markets is here explained by firms protecting themselves against hold-up by the rival.
- from an industry perspective:
 - when all firms mothball their underused dispatchable units, firms can charge subcontracting payments to one another so that profits increase.

colluding subcontracting terms

colluding firms set $0 \le \sigma_a^c \le 1$ to minimize deviation profits:

- $-\sigma_a^{c^*} = 1$ if back-up is cheap intuition: increase subcontracting payments
- $\sigma_{\rm a}^{\rm c^*}$ < 1 if back-up is expensive intuition: deviation/competing *coincides* with colluding

colluding subcontracting firms

Proposition:

The ex ante subcontracting terms if firms behave competitively also maximize the sustainability of collusion.

policy implication—It is impossible for a third party, i.e. a regulator or antitrust authority, to distinguish collusive from competitive behavior on the basis of the ex ante subcontracting terms.

colluding subcontracting firms

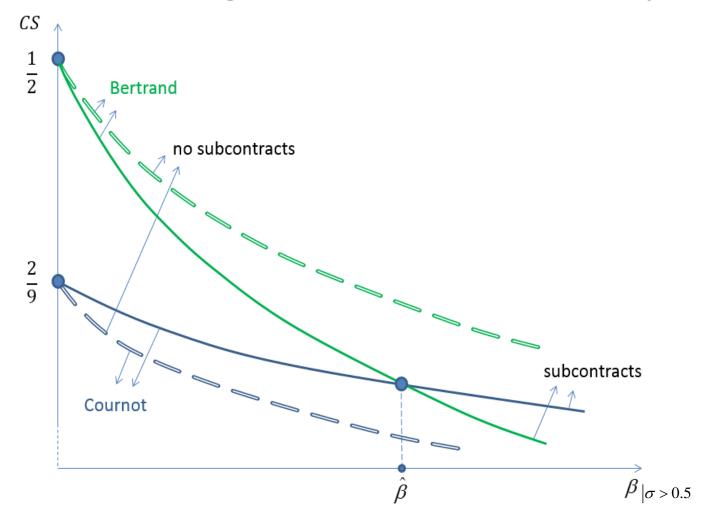
Proposition:

Only if subcontracting payments are substantial, firms deviate from the collusive price by charging a *higher* price.

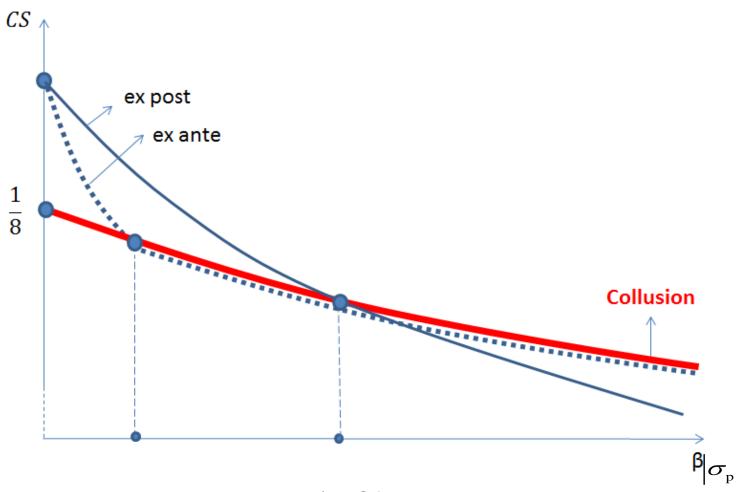
Intuition:

- the "revenue effect" from selling at a lower price does not outweigh the additional expected subcontracting cost.
- the "subcontracting effect" from selling at a lower price dominates the "revenue effect".

welfare


Proposition:

If the subcontractor appropriates a larger share of the subcontracting rents, industry output decreases so that consumers are worse off.


Proposition:

Subcontracts always increase industry profits.

subcontracting and consumer surplus

profit-maximizing subcontracts need not deteriorate consumer surplus

discussion and robustness

- supply function competition
- limited wind
- oligopoly
- linear tariffs
- subsidies and taxes

insights

- conventional plants need not be used to increase profits
- prisoner's dilemma
 - industry incentive to divest
 - firm incentive to invest
- subcontracting terms
 - maximize each firm's profits non-cooperatively
 - need not deteriorate consumer surplus

THANK YOU!