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1 Introduction

The recent collusion theory literature has developed a clear consensus that asymmetries hinder

collusion. For example, this result is robust to whether asymmetries are in terms of firms’

capacity constraints (see Compte et al., 2002; Vasconcelos, 2005; and Bos and Harrington, 2010

and 2014) or the number of di↵erentiated products that each firm sells (see Kühn, 2004). These

papers in particular have been important for merger policy as they have highlighted which types

of mergers can cause coordinated e↵ects, that is, an increased likelihood or sustainability of

tacit collusion post-merger. More specifically, with respect to capacity constraints, Compte et

al. (2002) show that collusion is more di�cult as the capacity of the largest firm is increased

through a merger, and Vasconcelos (2005) finds that collusion is hindered when the largest firm

is larger or when the smallest firm is smaller. Bos and Harrington (2010) show that increasing

the capacity of medium-sized firms can facilitate collusion, if only a subset of firms in the market

are involved in the collusion.1

In practice, the degree to which firms can monitor each other’s actions plays an important part

in determining whether a merger causes coordinated e↵ects. Yet, all of the papers above assume

there is perfect observability of rivals’ actions, so deviations from the collusive strategies will be

detected immediately. In contrast, many mergers occur in markets in which there is the potential

for secret price cuts. This may be the case, for example, in upstream business-to-business markets

where transaction prices can be unrelated to posted prices. Consequently, it is inappropriate to

consider the e↵ects of such mergers in terms of collusion under perfect observability. Instead,

they should be considered in the context of imperfect monitoring, where firms are uncertain over

whether their rivals have followed their collusive strategies or not (see Green and Porter, 1984;

Harrington and Skrzypacz, 2007 and 2011). However, while the models in this literature provide

many interesting insights into the sustainability of collusion, it is di�cult to draw implications

for merger policy from them, because they analyse collusion with symmetric firms.

In this paper, we begin to fill this gap in the literature by exploring the e↵ects of asymmetries

in capacity constraints on collusion under imperfect monitoring. We achieve this by extending

Compte et al. (2002) to a setting where there is demand uncertainty and where firms never

directly observe their rivals’ prices or sales. Thus, similar to the imperfect monitoring setting

first discussed by Stigler (1964), each firm must monitor the collusive agreement using their

1Fonseca and Normann (2008, 2012) also find that asymmetries in capacity constraints hinder collusion in

laboratory experiments.
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own privately observed sales. In this regard, our model is related to Tirole’s (1988, p.262-264)

model of private monitoring that captures the results of Green and Porter (1984) in a Bertrand

framework (see also Campbell et al., 2005, and Amelio and Biancini, 2010). Yet, unlike Tirole

(1988), where there is a chance in each period that market demand will be zero, in our model

market demand is drawn from an interval, where all possible states are positive. We use this

model to investigate whether collusion is facilitated or hindered as capacity is reallocated among

the firms to draw implications for merger policy.

Using information from their privately observed sales, we show that all firms can always infer

when at least one firm’s sales are below some firm-specific “trigger level”. The trigger level for

each firm is determined by the largest possible sales consistent with them or a rival being undercut

on price. Thus, if all firms set a common price, then all firms’ sales will exceed their respective

trigger levels when the realisation of market demand is high, otherwise they can all fall below

the trigger levels. Yet, if all firms do not set a common price, then at least one firm will receive

sales below their trigger level. We restrict attention to equilibria in public strategies, where firms

condition their play upon this public information, that is, whether all firms’ sales are greater than

their trigger levels or not.2 Such strategies ensure monitoring is perfect if fluctuations in market

demand are small, because firms will only ever receive sales below their trigger levels if they are

undercut. However, collusive sales can also fall below the trigger levels, if fluctuations in market

demand are large. Consequently, in contrast to Compte et al. (2002), there is uncertainty as to

whether rivals have followed the collusive strategies or not, so punishment periods must occur

on the equilibrium path to provide firms with the correct incentives to collude.

We find that asymmetries hinder collusion whether monitoring is perfect or imperfect. For

instance, the critical discount factor is higher when the largest firm is larger or when the smallest

firm is smaller. The reason for the former is that there is a greater incentive for the largest firm

to deviate in a punishment period when it has more capacity, so the punishment must be weaker.

The latter is due to the fact that deviations by the smallest firm are most di�cult for rivals to

detect, because each rival’s resultant sales are most similar to its collusive sales. Thus, decreasing

the size of the smallest firm makes monitoring more di�cult. Another implication of this is that

the optimal equilibrium profits are lower when the smallest firm is smaller. The reason is that

punishment phases occur more often on the equilibrium path when the smallest firm has less

2In the main paper, we focus on symmetric public strategies, where firms follow identical strategies after every

public history. In an appendix, we generate the same main results by solving the game following the approach of

Tirole (1988). This does not rely on symmetric strategies in our setting.
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capacity, since monitoring is more di�cult. The capacities of the medium-sized firms do not

a↵ect the critical discount factor or the equilibrium profits.

After solving the model, we then use it to draw implications for merger policy. In particular,

we analyse both the coordinated and unilateral e↵ects of mergers in a unified framework. Uni-

lateral e↵ects arise if any firm is likely to have an individual incentive to raise prices post-merger.

It is well understood that such e↵ects are associated with asymmetric post-merger market struc-

tures and coordinated e↵ects are associated with symmetric post-merger market structures (see

Ivaldi et al., 2003a and 2003b). In terms of the previous literature, these e↵ects have been mod-

elled independently of each other. For example, in the framework of Compte et al. (2002), either

the monopoly price is sustainable, in which case only coordinated e↵ects matter, or collusion is

not sustainable at any price, so only unilateral e↵ects matter. In contrast, our model allows for

a more continuous treatment of such e↵ects, because play alternates between phases of collusion

and competition on the equilibrium path.

The conventional wisdom is that coordinated e↵ects are more harmful to welfare than unilat-

eral e↵ects. The reason, as described by Röller and Mano (2006, p.22), is that “it is preferable

that any coordination is by only a subset of firms (i.e. the merging parties) rather than all

firms (tacitly)”. In other words, the fear is that firms will share the monopoly profits in every

future period if collusion is sustainable, so only a merger to monopoly would be equally as bad

in terms of unilateral e↵ects. This logic also implies that a merger that disrupts collusion, by

enhancing the market power of a single firm, should increase consumer surplus post-merger. In

contrast, we show, as conjectured by Kühn (2001) and Motta et al. (2003), that this conventional

wisdom is not always true under imperfect monitoring. This is due to the fact that firms will

not be able to share the monopoly profits, because punishment phases occur on the equilibrium

path. Consequently, a merger that facilitates collusion by distributing capacity symmetrically

can be less harmful to welfare than one that creates a near monopoly. We demonstrate that the

competitive prices of asymmetric capacity distributions are higher than the collusive prices of

symmetric capacity distributions, if the fluctuations in market demand are su�ciently large.

Finally, our model is distinct from the previous literature that analyses collusion with capacity

constraints and fluctuations in market demand. The main di↵erence is that our focus is on

mergers, which necessarily requires us to model asymmetries in markets with more than two firms.

In contrast, the focus of this other literature is on pricing over the business cycle. For instance,

Staiger and Wolak (1992) and Knittel and Lepore (2010) endogenise the choice of capacities in

an infinitely repeated game. Despite analysing asymmetric games following the capacity choice
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stage, they restrict attention to duopoly. Other di↵erences are that there is perfect observability

and market demand is known when prices are set. Under similar assumptions, Fabra (2006)

analyses collusion with exogeneous capacity constraints but with symmetric firms.

The rest of the paper is organised as follows. Section 2 sets out the assumptions of the model

and solves for the static Nash equilibrium. In section 3, we analyse the repeated game. We

first show that there is some public information that firms can condition their play on, and find

when monitoring is perfect or imperfect. Then we solve the game and discuss the comparative

statics, drawing implications for merger policy. In section 4, we analyse an example to show

that symmetric collusive capacity distributions can have substantially higher consumer surplus

than asymmetric noncollusive capacity distributions. Section 5 explores the robustness of our

results, and section 6 concludes. All proofs are relegated to appendix A. In appendix B, we solve

the game following the approach of Tirole (1988) and show that this generates the same main

results. This appendix is best read after section 3.2.

2 The Model

2.1 Basic assumptions

Consider a market in which a fixed number of n � 2 capacity-constrained firms compete on price

to supply a homogeneous product over an infinite number of periods. Firms’ costs are normalised

to zero and they have a common discount factor, � 2 (0, 1). In any period t, firms set prices

simultaneously where p
t

= {p
it

,p�it

} is the vector of prices set in period t, p
it

is the price of firm

i = {1, . . . , n} and p�it

is the vector of prices of all of firm i’s rivals. Market demand consists of

a mass of m
t

(infintesimally small) buyers, each of whom are willing to buy one unit provided

the price does not exceed 1, without loss of generality. We assume that firms are uncertain of

the level of market demand but they know that m
t

is independently drawn from a distribution

G(m), with mean bm and density g(m) > 0 on the interval [m,m].

Buyers are informed of prices, so they will want to buy from the cheapest firm. However, the

maximum that firm i can supply in any period is k
i

, where we let k
n

� k
n�1

� . . . � k
1

> 0,

without loss of generality. We denote total capacity as K ⌘
P

i

k
i

and the maximum that firm

i’s rivals can supply in each period as K�i

⌘
P

j 6=i

k
j

. In contrast to the buyers, firm i never

observes firm j’s prices, p
j⌧

, or sales, s
j⌧

, j 6= i, for all ⌧ 2 {0, . . . , t� 1}. Thus, similar to Tirole

(1988), our setting has the feature that all buyers are fully aware of prices, yet all firms are only
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aware of their own prices. Such a setting is consistent with a market in which all buyers are

willing to check the prices of every firm in each period to find discounts from posted prices, but

actual transaction prices are never public information.3

2.2 Demand rationing and sales

Following the other papers in the literature (for example, Vasconcelos, 2005; and Bos and Har-

rington, 2010 and 2014), we make the common assumption that demand is allocated using the

proportional rationing rule. This rule is as follows:

The proportional rationing rule

• Demand is allocated to the firm with the lowest price first. If this firm’s capacity is

exhausted, then demand is allocated to the firm with the second lowest price, and so on.

• If two or more firms set the same price and if their joint capacity su�ces to supply the

(residual) demand, then such firms each receive demand equal to its proportion of the joint

capacity.

This rationing rule is commonly considered in the literature in terms of firms selecting how much

of the market demand each supplies. Indeed, there are a number of cartels that have allocated

demand in proportion to each member’s capacity (see the examples in Vasconcelos, 2005, and

Bos and Harrington, 2010). However, it is less appropriate to think of the rationing rule in this

manner in our model, because selecting how to share the market demand is likely to require some

knowledge of market demand and rivals’ sales, which is not present in our setup. Instead, we

have tacit collusion in mind where buyers randomly allocate themselves among the firms with

tied prices and spare capacity. More specifically, suppose each buyer randomly selects such a

firm with a probability equal to the firm’s proportion of the joint capacity. It then follows from

the law of large numbers that the residual demand is allocated according to this rationing rule.

We also place the following plausible yet potentially restrictive assumption on the capacity

distribution:

Assumption 1. m � K�1

.

This says that the joint capacity of the smallest firm’s rivals should not exceed the minimum

market demand. This is a necessary condition that ensures firm i’s sales in period t are nonneg-

3In contrast to Tirole (1988), our main results simply require that enough buyers are informed of prices to

hold, if capacity constraints are binding.
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ative, for all i and m
t

, even if it is the highest-priced firm.4 Thus, denoting ⌦(p
it

) as the set of

firms that price below p
it

and pmax

t

⌘ max{p
t

}, the proportional rationing rule and Assumption

1 together imply that firm i’s sales in period t, s
it

(p
it

,p�it

;m
t

), for any p
it

 1, are:

s
it

(p
it

,p�it

;m
t

) =

8
>><

>>:

k
i

if p
it

< pmax

t

min

⇢
ki

K�
P

j2⌦(pit)
k
j

⇣
m

t

�
P

j2⌦(pit)
k
j

⌘
, k

i

�
� 0 if p

it

= pmax

t

(1)

This says that a firm will supply its proportion of the residual demand if it is the highest-priced

firm in the market and if capacity is not exhausted, otherwise it will supply its full capacity. This

implies that firm i’s expected per-period profit is ⇡
it

(p
it

,p�it

) = p
it

´
m

m

s
it

(p
it

,p�it

;m) g(m)dm,

where we drop time subscripts if there is no ambiguity. Furthermore, we write ⇡
i

(p) if p
j

= p

for all j, such that:

⇡
i

(p) =

8
>>><

>>>:

pk
i

if K  m

pk
i

⇣´
K

m

m

K

g(m)dm+
´
m

K

g(m)dm
⌘

if m < K < m

pk
i

bm
K

if m  K,

for all i. So, such profits are maximised for pm ⌘ 1.

To understand the generality of Assumption 1, note that it is not restrictive if all firms can

only ever collectively supply as much as the minimum market demand, m � K. Otherwise,

for a given level of m, there is a restriction on the size of the smallest firm in that it cannot

be too small. We believe that this is not very restrictive in the context of coordinated e↵ects.

For example, using data from European merger decisions between 1990 and 2004, Davies et al.

(2011) estimate that the European Commission would be expected to intervene due to concerns

of tacit collusion, only if the smallest firm has a market share in excess of 30% post-merger.5

Translating this result into our setting by supposing market shares are proportional to capacity,

Assumption 1 would then hold for such conditions if the minimum market demand is greater

than 70% of the total capacity, m � 0.7K. Moreover, the smallest firm’s capacity can be no

larger than for a symmetric duopoly, so a necessary (but not su�cient) condition for Assumption

1 to hold is that the minimum market demand must be greater than 50% of the total capacity,

m � 0.5K. Thus, it is clear that Assumption 1 comes with some loss of generality, but it is likely

4It also contrasts with Tirole’s (1988) model, which requires the less realistic assumption that the minimum

market demand is zero in some periods.
5This implies triopoly at most, and all bar one of the mergers that raised concerns of coordinated e↵ects over

this period were for duopolies.
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to hold for a large number of mergers that raise concerns of coordinated e↵ects.6 We place no

restriction on the level of the maximum market demand, m.

2.3 Static Nash equilibrium

In this subsection, we analyse the stage game. Consistent with the standard Bertrand-Edgeworth

setting, the static Nash equilibrium can be in pure strategies or mixed strategies. While the proof

of the former is trivial, we extend the equilibrium analysis in Fonseca and Normann (2008) to our

setting of demand uncertainty to solve for the latter. This is also equivalent to the equilibrium

analysis of Gal-Or (1984) if firms are symmetric.

Lemma 1. For any given n � 2 and K�1

 m, there exists:

i) a unique pure strategy Nash equilibrium, such that ⇡N

i

= k
i

for all i, if m � K, and

ii) a mixed strategy Nash equilibrium, such that, for all i:

⇡N

i

(k
i

, k
n

, bm) =

8
<

:

ki
kn

⇣´
K

m

(m�K�n

) g(m)dm+ k
n

´
m

K

g(m)dm
⌘

if m < K < m

ki
kn

(bm�K�n

) if m  K.
(2)

Competition is not e↵ective if the minimum market demand is above total capacity, m � K, so

firms set p
i

= 1 and receive ⇡N

i

= k
i

for all i. In contrast, if market demand can be below total

capacity, firms are not guaranteed to supply their full capacity for every level of demand, so they

have incentives to undercut each other. However, by charging p
i

= 1, firm i can ensure that its

expected per-period profit is at least:

⇡
i

⌘

8
<

:

´
K

m

(m�K�i

) g(m)dm+ k
i

´
m

K

g(m)dm if m < K < m

bm�K�i

if m  K.
(3)

This defines firm i’s minimax payo↵. The intuition is that the firm with strictly the highest price

expects to supply its full capacity if the realisation of market demand exceeds total capacity, but

it expects to supply the residual demand otherwise. It follows from this that the largest firm

will never set a price below p ⌘ ⇡
n

/k
n

in an attempt to be the lowest-priced firm. This implies

that the smaller firms i < n can sell their full capacity with certainty by charging a price slightly

below p to obtain a profit of k
i

⇡
n

/k
n

> ⇡
i

. Consequently, there exists a mixed strategy Nash

equilibrium with profits given by (2), where Assumption 1 is su�cient to ensure that these are

nonnegative for all i. The lower bound of the support is p.

6Furthermore, Assumption 1 is actually su�cient for our main results, because we have generated similar

results for duopoly when Assumption 1 is relaxed. These results are available from the authors upon request.
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3 Monitoring with Asymmetries

In this section, we analyse the repeated game. We first show that there is some public information

that firms can condition their play on, and find when monitoring is perfect or imperfect. We

then solve the game, analyse the comparative statics, and draw implications for merger policy.

Henceforth, we impose m < K, as collusion is unnecessary otherwise from Lemma 1.

3.1 Information and monitoring

Under our assumptions, repetitions of the stage game generate private and public information

histories. For instance, the private history of firm i in period t is the sequence of its past prices

and sales, denoted zt
i

⌘ (p
i0

, s
i0

; . . . ; p
it�1

, s
it�1

). In contrast, a public history is the sequence of

information that is observed by all firms, regardless of their actions. In this subsection, we show

that the fact that each firm observes its own sales implies that all firms will always know when

at least one firm’s sales are below some firm-specific “trigger level”. As we discuss below, firms

can then use public strategies in which they condition their play on this public information.

Formally, letm⇤ (k
1

,m) ⌘ K(m�k
1

)
K�1

where firm i’s trigger level is s⇤
i

⌘ min
�

ki
K

m⇤ (k
1

,m) , k
i

 

for all i. As we show below, such trigger levels are determined by the largest possible sales firms

i > 1 can make if all such firms set the same price and firm 1 undercuts. This then guarantees that

at least one firm will always receive sales below their trigger level, if all firms do not set a common

price. Now consider the history ht = (y
0

, y
1

, . . . , y
t�1

) where, for all ⌧ = {0, 1, . . . , t� 1}:

y
⌧

=

8
><

>:

y if s
i⌧

(p
i⌧

,p�i⌧

;m
⌧

) > s⇤
i

8 i

y otherwise.

This says that y
⌧

= y if all firms’ sales in period ⌧ exceed their trigger levels, but y
⌧

= y if at

least one firm’s sales does not.

We wish to establish that ht is a public history. This requires that y
⌧

is common knowledge

for all ⌧ , for any zt
i

. Clearly, this is the case if the trigger levels are so high that all firms’ sales

can never exceed them for any prices, that is, s⇤
i

= k
i

so y
⌧

= y for all ⌧ . This occurs only if the

maximum market demand is above the total capacity, m � K, because then a firm is uncertain

as to whether a rival has undercut it on price, even if the firm sells its full capacity. So consider

m < K, where it is possible for firms to receive sales above their trigger levels, since s⇤
i

< k
i

. In

this case, if all firms do not set a common price, then the sales of the firm(s) with the highest

price in the market will never exceed their trigger levels. For instance, for any nonempty set of
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rivals with a price below pmax, ⌦ (pmax), the sales of firm i with p
i

= pmax  1 are:

s
i

=
k
i

K �
P

j2⌦(p

max

)

k
j

⇣
m

t

�
P

j2⌦(p

max

)

k
j

⌘
 k

i

(m� k
1

)

K�1

= s⇤
i

< k
i

, (4)

from (1). This guarantees that ht is also a public history if m < K for the following reasons. If

all firms set a common price p  1, then the sales of all firms will exceed their respective trigger

levels if the realisation of market demand is high, otherwise they can all fall below the trigger

levels. Yet, as has just been demonstrated, if all firms do not set such a common price, then the

sales of the firms that set the highest price will not exceed their trigger levels and all of their

rivals will supply their full capacities.7 Any firm that supplies its full capacity can infer from

this that at least one firm’s sales are below its trigger level. The reason is that each firm knows,

from (1), that it will supply its full capacity only if its price is below the highest in the market.8

This public information allows firms to make inferences about the behaviour of their rivals.

In particular, each firm knows that all firms’ sales will exceed their trigger levels, such that

y = y, only if p
j

= p  1 for all j and if m > m⇤ (k
1

,m); otherwise, at least one firm’s sales will

not exceed its trigger level, so y = y. It follows from this that there is perfect monitoring of a

strategy in which all firms set a common collusive price, if m > m⇤ (k
1

,m). This is due to the

fact that each firm would only receive sales below its trigger level, if it has been undercut. In

contrast, there is imperfect monitoring of such an agreement, only if m  m⇤ (k
1

,m). The reason

can be understood by considering Pr
�
y|p

i

,p�i

�
which denotes the probability of observing y if

firm i sets p
i

and its rivals price according to p�i

. For the case of m  m⇤ (k
1

,m):

Pr
�
y|p

i

,p�i

�
=

8
<

:
G (m⇤ (k

1

,m)) =
´
min{m⇤

(k

1

,m),m}
m

g (m) dm 2 [0, 1] if p
j

= p 8j

1 otherwise.
(5)

This says that a firm’s sales can be below their trigger level if the realisation of market demand is

su�ciently low, even when firms set a common price. Thus, for such an outcome colluding firms

face a non-trivial signal extraction problem: each firm does not know whether the realisation of

market demand was unluckily low or whether at least one rival has undercut them.

7Likewise, if any firms’ prices are above 1, then they will receive zero sales, which is below their trigger levels.

In this case, only the firms whose prices do not exceed 1 will supply their full capacities.
8Notice that if the trigger levels were below s⇤i for all i, then a firm that supplies its full capacity would be

uncertain as to whether at least one rival has received sales below its trigger level. So, any such trigger levels

would not generate a public history. In contrast, trigger levels above s⇤i for all i would also ensure that ht is a

public history. However, such trigger levels have the strange feature that firms can receive a bad signal y, even

when all firms know that they have set a common price. Consequently, such alternative trigger levels are inferior

to s⇤i : they raise the critical discount factor and lower equilibrium profits compared to the main analysis.
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Proposition 1 finds the conditions for perfect and imperfect monitoring in terms of the max-

imum market demand, holding the minimum market demand constant.

Proposition 1. For any given n � 2, K�1

 m < K, and � 2 (0, 1), there exists a unique level

of market demand, x (k
1

) 2 (m,K), such that monitoring is perfect if m < x (k
1

) . Otherwise,

there is imperfect monitoring.

Monitoring is perfect if the fluctuations in market demand are su�ciently small, otherwise

there is imperfect monitoring. The critical level is strictly increasing in the capacity of the

smallest firm, k
1

. The reason is that deviations by the smallest firm are most di�cult to detect,

from (4). Furthermore, it follows from this logic that detecting deviations is less di�cult when

the smallest firm is larger. Consequently, if it is just possible for a firm to infer that the smallest

firm has not deviated for a given level of m, then it is also possible for the same level of m if

the smallest firm has more capacity. This implies that deviations can be detected perfectly for a

wider range of fluctuations in market demand if the smallest firm is larger.

Finally, we have so far considered the public information that firms can infer from their

privately observed sales. Before moving on, we should discuss two possible scenarios in which

a firm’s sales can provide it with private information that is not common knowledge among all

firms. In either case though, it should be noted that any such private information is not payo↵

relevant if rivals follow public strategies. Thus, it will not be possible for a firm to use its private

information to gain by deviating from an equilibrium in public strategies. The first case is when

a firm knows for sure that it has been undercut. This occurs if firm i’s sales are inconsistent

with all firms setting a common price, s
i

< ki
K

m for some i. Such information is not common

knowledge if monitoring is imperfect, because the deviants j 6= i would be unaware of the specific

levels of its rivals’ sales: they simply knows that at least one rival’s sales are below its trigger

level. The second case is when the smallest firm knows for sure that all firms have set a common

price, but its rivals i > 1 are uncertain as to whether the smallest firm has undercut them. This

may occur only if firm 1 is strictly the smallest firm and if fluctuations in market demand are

not large, such that m < K. In such a case, the highest possible sales of the smallest firm if it is

undercut are k

1

K�2

(m� k
2

) < s⇤
1

. Thus, if the smallest firm’s sales are below its trigger level yet

above k

1

K�2

(m� k
2

), then it knows for sure that all firms have set a common price. Nevertheless,

the fact that its sales are below its trigger level will inform the smallest firm that its rivals’ sales

are also below their trigger levels.

11



3.2 Optimal symmetric equilibrium payo↵s

We now solve the repeated game restricting attention in this subsection to symmetric perfect

public equilibria (SPPE) in pure strategies (see Fudenberg and Tirole, 1994, p.187-191). Such

equilibria are sequential equilibria in public strategies, in which firms condition their play only

on the public history. Such strategies are strongly symmetric in the sense that each firm uses

an identical strategy after every public history. This implies that firms are required by the

strategy to set common prices in future periods, even if they have not set common prices in the

past. Thus, if such strategies prescribe a pricing path {p
t

}1
t=1

for some history ht, then firm i’s

expected (normalised) profits are:

(1� �)
1X

t=1

�t�1⇡
i

(p
t

) ⌘ k
i

V
�
ht

�
,

where V (ht) ⌘ (1��)

K

P1
t=1

�t�1

P
i

⇡
i

(p
t

) is the expected (normalised) profits per unit of ca-

pacity. Consequently, the expected future punishments and rewards for each firm depend upon

how much capacity it has. Furthermore, our strong symmetry assumption restricts attention to

symmetric subgame perfect Nash equilibria (SPNE) if monitoring is perfect, because then the

set of perfect public equilibria (PPE) coincide with the set of SPNE. We say that collusion is

not sustainable if no such equilibria exist.

We are interested in finding an optimal SPPE that supports the highest SPPE payo↵s. Thus,

following Abreu et al. (1986, 1990), we note that any public strategy profile can be transformed

into firm i’s profits of the stage game and a continuation payo↵ function. The continuation payo↵

function, w
i

(y), describes the expected (normalised) future profit of firm i depending upon the

realisation of y from the stage game, and the strong symmetry assumption implies it is of the

form k
i

V (ht). We define E [w
i

(y) |p
i

,p�i

] as the expected (normalised) continuation payo↵ if

firm i sets p
i

and expects its rivals to price according to p�i

. Thus, firm i’s expected (normalised)

profit from a symmetric public strategy is (1� �)⇡
i

(p) + �E [w
i

(y) |p] for all i. Let E (�,m) be

the (possibly empty) set of SPPE payo↵s for a given �, and let V and V be the highest and

lowest SPPE payo↵s per unit of capacity, when the set is nonempty.

An optimal SPPE chooses a profile p and a function w
i

(y) to maximise a firm’s expected

profits subject to the constraints that all the continuation payo↵s correspond to SPPE profiles,

w
i

(y) 2 E (�,m) for all i, and that, for all p
i

6= p,

(1� �)⇡
i

(p) + �E [w
i

(y) |p] � (1� �)⇡
i

(p
i

, p) + �E [w
i

(y) |p
i

, p] 8 i. (6)

This says that no firm must be able to gain by a (one-stage) deviation from the symmetric

12



strategy. Furthermore, making the common assumption that there is some publically observable

randomisation device ensures that a nonempty set of SPPE payo↵s is convex. Thus, such a

set can be represented by the interval
⇥
V , V

⇤
, where firm i’s SPPE payo↵ is k

i

V for any given

V 2
⇥
V , V

⇤
, for all i. It then follows from the so-called bang-bang property that the highest

SPPE payo↵ for firm i can be characterised by restricting attention to SPPEs that threaten to

switch to either k
i

V or k
i

V .

More specifically, we assume that, after observing y
t

, the firms observe the realisation of the

public randomisation device, and it has the following implications for their behaviour. If firms

observe y in period t, then period t+1 is a “punishment period” with probability ↵ 2 [0, 1] and it

is a “collusive period” otherwise, where the continuation payo↵s are k
i

V in punishment periods

and k
i

V in collusive periods from the bang-bang property. Yet, if firms observe y in period t,

then period t + 1 is a punishment period with probability � 2 [0, 1] and it is a collusive period

otherwise. Thus, letting ✓ ⌘
�
1� Pr

�
y|p

��
↵+Pr

�
y|p

�
�, it follows from the above and (5) that

firm i’s expected continuation payo↵ if it expects its rivals to set p is:

E [w
i

(y) |p
i

, p] =

8
><

>:

k
i

⇥
✓V + (1� ✓)V

⇤
if p

i

= p

k
i

⇥
�V + (1� �)V

⇤
if p

i

6= p.

Notice that ✓ = � for any m � K, as then Pr
�
y|p

�
= 1 from (5). This implies E (�,m) is an

empty set for any � if m � K, because (6) does not ever hold. Consequently, we henceforth focus

on the case of m  m < K.

Thus, we can characterise the highest and the lowest SPPE payo↵s, and hence the set of

SPPE payo↵s, by solving the following constrained optimisation problem:

V = max
↵,�,p

c
,p

p
(1� �) bm

K

pc + �
⇥
✓V + (1� ✓)V

⇤

subject to:

V = (1� �) bm
K

pc + �
⇥
✓V + (1� ✓)V

⇤

V = (1� �) bm
K

pp + �
⇥
✓V + (1� ✓)V

⇤

k
i

V � (1� �)⇡
i

(p
i

, pc) + �k
i

⇥
�V + (1� �)V

⇤
8 p

i

6= pc, 8 i (7)

k
i

V � (1� �)⇡
i

(p
i

, pp) + �k
i

⇥
�V + (1� �)V

⇤
8 p

i

6= pp, 8 i (8)

0  ↵  1, 0  �  1, p = ⇡
n

/k
n

< pc  1, pp < pc

This constrained optimisation problem solves for both the highest and the lowest SPPE payo↵s

in one step, because a higher V will automatically allow for a lower V , and vice versa. Regarding

13



the constraints, the first two are just identities that follow from the continuation payo↵s described

above, whereas (7) and (8) are the collusive period and punishment period incentive compatibility

constraints (ICCs), respectively. The remaining constraints are also natural. Without loss of

generality, we let the collusive price be pc > p, as this is a necessary (but not su�cient) condition

for k
i

V to be greater than the static Nash equilibrium profits. We do not require that the

punishment price, pp, is nonnegative to allow for the case where it is below marginal cost (which

has been normalised to zero).9

To simplify our constrained optimisation problem, we consider which firms have the greatest

incentives to deviate in collusive periods and in punishment periods to restrict attention to the

ICCs that bind. To begin, notice that firm i’s optimal deviation profits from any given p, are:

⇡
i

(p⇤
i

, p) ⌘

8
<

:
k
i

p if p > ⇡
i

/k
i

⇡
i

if p  ⇡
i

/k
i

,
(9)

where ⇡
i

= bm�K�i

for any m < K from (3). This says that it is optimal for firm i to deviate by

marginally undercutting a common price if such a price is su�ciently high, otherwise it should

supply the residual demand at the monopoly price. Thus, in a collusive period where pc 2
�
p, 1

⇤
,

it follows that firm i’s optimal deviation profits are ⇡
i

(p⇤
i

, pc) = k
i

pc. Substituting this into

(7) clearly shows that the k
i

’s cancel. This implies that if the collusive period ICC holds for

firm i, then it also satisfied for all other firms j 6= i. In contrast, in a punishment period, the

punishment price pp could be above or below p. Consequently, the incentives to deviate may

di↵er for each firm. Nevertheless, regardless of the level of pp, a necessary and su�cient condition

for the punishment period ICC to be satisfied for all firms is that it holds for the largest firm.

Thus, we only need consider the collusive period ICC for some firm i and the punishment period

ICC for firm n.

Proposition 2 solves for the highest and lowest SPPE payo↵s given there is imperfect moni-

toring. We refer to this as collusion under imperfect monitoring.

9This is an innocuous assumption. We could generate the same results, with pp � 0, if marginal costs were

su�ciently high. Alternatively, we could assume a separate randomisation device for punishment periods, with

di↵erent probabilities compared to the collusive period randomisation device. This would ensure the firms have

more instruments than just ↵, �, pp and pc. Furthermore, we actually generate the same results in appendix B,

with nonnegative prices in the punishment phase and without the need of a randomisation device. However, if

pp � 0 is imposed, then the highest SPPE payo↵s remain unchanged, but the critical discount factor is robust

only if bm is su�ciently large (see the proof of Proposition 2 for more details). The critical discount factor is

higher otherwise.
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Proposition 2. For any given n � 2 and K�1

 m < K, there exists a unique x (k
1

, k
n

) 2

(x (k
1

) ,K), that solves G (m⇤ (k
1

, x (k
1

, k
n

))) = 1 � kn
K

< 1, such that the highest and lowest

SPPE payo↵s for firm i are:

k
i

V =
k
i

K

✓
bm�G (m⇤ (k

1

,m))K

1�G (m⇤ (k
1

,m))

◆
2
✓
⇡N

i

(k
i

, k
n

, bm) ,
k
i

K
bm
◆

8 i,

k
i

V = k
i

V � (1� �)
k
i

k
n

(K � bm) 2
�
⇡N

i

(k
i

, k
n

, bm) , k
i

V
�
8 i,

if and only if � � �⇤ (k
1

, k
n

) ⌘ 1

1�G(m

⇤
(k

1

,m))

kn
K

2
�
kn
K

, 1
�
, for any x (k

1

)  m < x (k
1

, k
n

).

Otherwise, collusion is not sustainable.

Firms set the monopoly price in collusive periods with ↵⇤ = 0 and �⇤ > 0 (the stars indicate

optimal values), where �⇤ is set at the level where the collusive period ICC is binding with

no slack. This implies that punishment periods occur on the equilibrium path when there is

imperfect monitoring, so the equilibrium payo↵s are below the monopoly level. The necessary

conditions that ensure this is an optimal SPPE are found by noting that �⇤ must be less than or

equal to 1. A lower price in punishment periods reduces �⇤, so pp is set low enough so that the

punishment period ICC for the largest firm is binding with no slack. Furthermore, the critical

discount factor must be less than 1, so that firms can be su�ciently patient. This in turn requires

that there is a su�ciently low probability that firms’ sales will be below their trigger levels when

they set a common price. So, x (k
1

, k
n

) is implicitly defined as the level of the maximum market

demand that sets the critical discount factor to 1.

Next, turning our attention to the case of perfect monitoring, we use the fact that the set of

SPPE coincide with the set of symmetric SPNE when monitoring is perfect. Consequently, we

can easily generate this set under perfect monitoring by setting G (m⇤ (k
1

,m)) = 0 in the above.

Thus, the set of symmetric SPNE payo↵s is summarised by the following corollary. We refer to

this as collusion under perfect monitoring.

Corrolary 1. For any given n � 2 and K�1

 m < m  x (k
1

), the highest and lowest SPNE

payo↵s for firm i are:

k
i

V =
k
i

K
bm > ⇡N

i

(k
i

, k
n

, bm) 8 i,

k
i

V = k
i

V � (1� �)
k
i

k
n

(K � bm) 2
⇥
⇡N

i

(k
i

, k
n

, bm) , k
i

V
�
8 i,

if and only if � � �⇤ (k
n

) ⌘ kn
K

2
�
0, m

K

⇤
. Otherwise, collusion is not sustainable.
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The firms divide the monopoly profits between them if they are su�ciently patient. The

critical discount factor is the same as the lowest critical discount factor in Compte et al. (2002).

It also coincides with the lowest possible discount factor that sustains collusion given the propor-

tional rationing rule. The reason is that, as showed by Lambson (1994), the optimal punishments

under the proportional rationing rule are such that the largest firm receives the stream of profits

from its minimax strategy. In our setting, the per-period minimax payo↵ of the largest firm is

equivalent to its static Nash equilibrium profits. Moreover, the lowest possible SPNE payo↵ k
i

V

is also the static Nash equilibrium profits. Thus, it is not possible to lower the critical discount

factor below this level, given the proportional rationing rule.

Figure 1: parameter space of collusion

These results are brought together in Figure 1. It highlights that the critical discount factor

under imperfect monitoring, �⇤ (k
1

, k
n

), converges to the critical level under perfect monitoring,

�⇤ (k
n

), at m = x (k
1

), but it is strictly above �⇤ (k
n

) for any higher maximum market demand.

To understand how the equilbrium profits change in Figure 1, note that the highest equilibrium

payo↵s, k
i

V , are independent of � for any m and that, assuming a mean-preserving spread,

they are strictly decreasing in m between x (k
1

) and x (k
1

, k
n

) for a given �. The latter also

implies that the lowest equilibrium payo↵s, k
i

V , are strictly decreasing in m over the same

range. Furthermore, the lowest equilibrium profits equal the static Nash equilibrium profits

when evaluated at the critical discount factor, and they increase towards k
i

V as � tends to
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1 for any given m. This implies that k
i

V = k
i

V = ⇡N

i

(k
i

, k
n

, bm) at m = x (k
1

, k
n

) where

�⇤ (k
1

, k
n

) = 1. Before moving on, the reader may wish to check appendix B, where we generate

the same main results following an alternative approach.

3.3 Comparative statics

We want to analyse the e↵ects of mergers in our setting. Before doing so, it is helpful to consider

changes in the capacity distribution, when the number of firms and the total capacity are held

constant. This will first provide a clear understanding of how the capacity distribution a↵ects

collusion. We discuss the e↵ects of mergers in the following subsection. Under these assumptions,

any such changes in the capacity of a given firm will require capacity to be reallocated from a

rival. For example, increasing the size of the smallest firm in a duopoly implies that the capacity

of the largest firm decreases. In general, when the capacity of firm j changes by a small amount,

other things equal, the capacities of the other firms will have to change to the extent that

@ki
@kj

2 [�1, 0] for all i 6= j, where
P

i 6=j

@ki
@kj

= �1. In what follows, we show that only changes to

the capacity of the smallest firm or the largest firm a↵ect the equilibrium analysis.

Proposition 3 analyses the e↵ects of reallocating capacity among the firms on the critical

discount factor.

Proposition 3. For any given n � 2 and K�1

 m < K,

i) if m  m < x (k
1

), then �⇤ (k
n

) is strictly increasing in the capacity of the largest firm, k
n

,

ii) if x (k
1

)  m < x (k
1

, k
n

), then �⇤ (k
1

, k
n

) is strictly increasing in the capacity of the largest

firm, k
n

, and strictly decreasing in the capacity of the smallest, k
1

.

Consistent with Compte et al. (2002), increasing the size of the largest firm hinders collusion.

The reason is that the punishment is weaker when the largest firm is larger, as this ensures that

the largest firm has no incentive to deviate in a punishment period. Consequently, the collusive

phase ICC is tighter than before, so the critical discount factor rises. In contrast to Compte

et al. (2002), increasing the size the smallest firm facilitates collusion. This is due to the fact

that firms can monitor an agreement to set a common price through public information more

successfully when the smallest firm is larger. This does not a↵ect the critical discount factor

under perfect monitoring but, as we saw in section 2.1, it does imply that monitoring is perfect

for a wider range of fluctuations in market demand. Under imperfect monitoring, it is less likely

that a collusive period will switch to a punishment phase on the equilibrium path. Consequently,
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the collusive period ICC has more slack when the smallest firm is larger, so the critical discount

factor falls.10

Next, we analyse the e↵ects of reallocating capacity among the firms on the highest equilib-

rium payo↵s. For convenience, we transform such payo↵s to an average price and compare it

to the average static Nash equilibrium price, given by bpN (k
n

, bm) ⌘ K

bm
(bm�K�n)

kn
for all m < K.

The average price of the highest equilibrium payo↵s under perfect monitoring is independent of

the capacity distribution, since firms set pm in each period if they are su�ciently patient. So,

Proposition 4 investigates the e↵ect of reallocating capacity on the average price associated with

the highest SPPE payo↵s under imperfect monitoring. We refer to this as the best average price,

and this is given by bpc (k
1

,m) ⌘ K

bmV in expectation.

Proposition 4. For any given n � 2, K�1

 m < x (k
1

) < m < x (k
1

, k
n

) and � � �⇤ (k
1

, k
n

),

the best average price bpc (k
1

,m) satisfies bpN (k
n

, bm) < bpc (k
1

,m) < pm and it is strictly increasing

in the capacity of the smallest firm, k
1

.

The best average price is increasing in the capacity of the smallest firm for two reasons.

First, as the capacity of the smallest firm increases, it is less likely that firms’ sales will be below

their trigger levels when they set a common price. Thus, profits rise on the equilibrium path,

other things equal, because collusive periods are less likely to switch to punishment periods than

before. Second, such an increase in profits also introduces slack into the collusive phase ICC, so

�⇤ falls to ensure that it is binding with no slack. Both e↵ects imply that firms expect there to

be more collusive periods on the equilibrium path than when the smallest firm has less capacity,

so the best average price rises.

Surprisingly, the best average price is independent of the capacity of the largest firm. This

is due to the fact that there are two e↵ects that perfectly o↵set each other. The first e↵ect is

that an increase in the capacity of the largest firm raises profits on the equilibrium path, other

things equal. The reason is that the punishment is weaker than before to ensure that the largest

firm will not deviate in any punishment phase. However, this also tightens the collusive phase

ICC, so the second e↵ect is that �⇤ must increase to ensure that it is binding with no slack. This

second e↵ect cancels out the first, implying the size of the largest firm has no e↵ect on the best

average price.

10Both results are consistent with the findings of Vasconcelos (2005). The underlying incentives for his results

are very di↵erent to ours though, as they rely on capacities a↵ecting marginal costs in a setting of perfect

observability.
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It follows from the above analysis that asymmetries hinder collusion under perfect and im-

perfect monitoring. In summary, Proposition 3 implies that the parameter space of collusion

is greatest when firms’ capacities are symmetric, because the punishment is harshest when the

largest firm is as small as possible, and since monitoring is most successful when the smallest firm

is as large as possible. The latter also implies that the best average price is also higher when firms

are symmetric from Proposition 4. Furthermore, since the best average price is independent of

the size of the largest firm, it follows that best average price is highest for a symmetric duopoly

and that, for example, it would be higher for a symmetric triopoly than an asymmetric duopoly

with k
1

< K/3.

Despite the fact that asymmetries hinder collusion, Proposition 5 next shows that the com-

petitive prices of asymmetric capacity distributions will be higher than the collusive prices of

less asymmetric capacity distributions, if fluctuations in market demand are su�ciently large.

To prove this result, we compare the best average price of one distribution, (k
1

, k
n

), to the static

Nash equilibrium average price of another, denoted (k0
1

, k0
n

).

Proposition 5. For any given n � 2 and K�1

 m < K, there exists a unique x (k
1

, k0
n

) 2

(x (k
1

) , x (k
1

, k
n

)) if k0
n

> k
n

, that solves G (m⇤ (k
1

, x (k
1

, k0
n

))) = 1 � k

0
n
K

< 1, such that the

static Nash equilibrium average price of (k0
1

, k0
n

) is greater than the best average price of (k
1

, k
n

),

bpN (k0
n

, bm) > bpc (k
1

,m), if x (k
1

, k0
n

) < m < x (k
1

, k
n

) for any � � �⇤ (k
1

, k
n

).

The intuition is that an increase in the maximum market demand raises the likelihood that

firms’ sales will be below their trigger levels when firms set a common price. Thus, punishment

periods are expected to occur more often than before on the equilibrium path. As a result,

the best average price of (k
1

, k
n

) falls towards its corresponding static Nash equilibrium average

price as the maximum market demand increases towards the critical level x (k
1

, k
n

). Yet, the

average static Nash equilibrium price is strictly increasing in the capacity of the largest firm, k
n

.

Consequently, if the largest firm of an alternative distribution (k0
1

, k0
n

) has more capacity than the

original, k0
n

> k
n

(so k0
1

 k
1

), then (k0
1

, k0
n

) will have a higher average static Nash equilibrium

price than the best average price of (k
1

, k
n

), bpN (k0
n

, bm) > bpc (k
1

,m), if the maximum market

demand is su�ciently close to x (k
1

, k
n

). The critical level of the maximum market demand above

which this is true, x (k
1

, k0
n

), is the point at which bpc (k
1

,m) = bpN (k0
n

, bm) for all � � �⇤ (k
1

, k
n

),

or expressed di↵erently, the point where k
i

V = ⇡N

i

(k
i

, k0
n

, bm). Furthermore, the condition that

the maximum market demand exceeds this level guarantees that collusion is not sustainable for
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(k0
1

, k0
n

), since it contradicts the necessary condition in Proposition 2 that the maximum market

demand is below x (k0
1

, k0
n

)  x (k
1

, k0
n

).

3.4 Implications for mergers

We now use our equilibrium analysis to draw implications for merger policy. In particular, we are

interested in comparing the unilateral and coordinated e↵ects in our framework. Such e↵ects have

been considered independently of each other in the previous literature. For instance, Compte et

al. (2002) and Vasconcelos (2005) focus solely on the e↵ects of mergers on the critical discount

factor, because firms can share the monopoly profits if they are su�ciently patient. Bos and

Harrington (2010) analyse the coordinated e↵ects of mergers on the price of a cartel that does

not encompass all firms in the market. They find that mergers that raise the capacity controlled

by the cartel can increase the cartel price towards the monopoly level. However, in contrast to our

model, they restrict attention to capacity distributions for which there is a unique pure strategy

static Nash equilibrium price equal to marginal cost, so unilateral e↵ects are not an issue. Thus,

such papers are consistent with the conventional wisdom that collusive post-merger outcomes are

worse than non-collusive outcomes. In our setting, collusion under imperfect monitoring does

not enable firms to share the monopoly profits in every period. As a result, the conventional

wisdom will not hold, if competition in the noncollusive outcome is weak and hence prices are

high. Below we explore for which mergers the conventional wisdom does not hold.

The following analysis di↵ers to the earlier comparative statics in that a merger will reduce

the numbers of firms and that a merger can increase both the size of the smallest and largest firm

at the same time. We also consider the firms’ incentives to merge. Following the terminology of

Farrell and Shapiro (1990), we henceforth refer to the merging firms as insiders and those not

involved in the merger as outsiders. We say that a merger is privately optimal if the sum of

insiders’ profits post-merger is strictly greater than the sum of their profits pre-merger. Finally,

with respect to welfare, we focus on the e↵ects of mergers on consumer surplus, as this is

commonly perceived to be the main objective of merger control (see Lyons, 2002).11 Figure 2

depicts the e↵ects of two mergers that change the equilibrium analysis either by only increasing

the size of the smallest firm or by only increasing the size of the largest firm. We discuss each in

turn. A merger that increases the size of both the smallest and the largest firm will have a mix

of the following e↵ects, and this issue is analysed more in the next section. All other mergers

will not a↵ect the equilibrium analysis.

11Moreover, the expected total welfare is independent of the capacity distribution.
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Figure 2: The e↵ects of mergers

A merger that increases the size of the smallest firm will facilitate collusion. It follows from

Proposition 3 that the parameter space of collusion will expand and Proposition 4 implies that

the average price may also rise post-merger. More specifically, and as usual, the price will rise if

collusion is not sustainable pre-merger but it is post-merger. Yet, in contrast to models where

firms share the monopoly profits when colluding, such a merger will also raise the best average

price, if there is collusion under imperfect monitoring pre-merger. Thus, the complete parameter

space for which such a merger raises the average price is illustrated in the shaded area of Figure

2(a).12 Any such merger that raises the average price is privately optimal and it also strictly

increases the profits of the outsiders. This follows since the present discounted value of profits,

given an average price bp, is
P

i2M

ki
K

bm
⇣

bp
1��

⌘
for any subset of firms M , so this is strictly higher

post-merger if the average price is higher. As a consequence, such a merger will also lower

consumer surplus, since the expected consumer surplus per unit is 1� bp. Thus, consistent with

the conventional wisdom, any collusive post-merger outcome that has been facilitated by an

increase in the size of the smallest firm is worse than the pre-merger outcome.13

12The average price rises to pm = 1 if there is collusion under perfect monitoring post-merger. It is below this

level if there is collusion under imperfect monitoring. The merger has no e↵ect on the average price if there is

collusion under perfect monitoring pre- and post-merger.
13It follows from this that larger firms i > 1 can actually increase their profits by divesting capacity to the

smallest firm, so that monitoring is easier. Such divestments are not unheard of in actual merger cases, because
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A merger that increases the size of the largest firm will hinder collusion. Proposition 3

implies that the parameter space of collusion will be reduced. Nevertheless, in contrast to the

conventional wisdom, it follows from Proposition 5 that such a merger may not actually decrease

prices, if there is collusion under imperfect monitoring pre-merger but collusion is unsustainable

post-merger. As illustrated in the shaded area of Figure 2(b), the average price is actually higher

post-merger, if fluctuations in market demand are su�ciently large. In fact, our model suggests

that it is only in the insiders’ interests to propose a merger that destabilises collusion, if the

average price rises post-merger. This follows since such a merger is privately optimal for any

set of firms M if
P

i2M

ki
K

bm
✓

bpN(k0
n,bm)

1��

◆
>
P

i2M

ki
K

bm
⇣

bpc
(k

1

,m)

1��

⌘
. Consequently, the condition

that guarantees the insiders’ profits increase post-merger also ensures that the average price

rises post-merger. Moreover, the same condition also guarantees that such a merger increases

the profits of the outsiders and lowers consumer surplus.14

Thus, this suggests that the conventional wisdom does not always hold if a merger desta-

bilises collusion under imperfect monitoring by increasing the size of the largest firm. The same

conclusion applies if, in contrast to comparing pre- and post market structures as we have above,

the comparison is instead between two possible merger outcomes, where one is asymmetric and

noncollusive while the other is a less asymmetric and collusive. For example, this could arise if

the merging parties o↵ered to divest capacity to remedy concerns of coordinated e↵ects. In either

case, when a competition agency must decide between such market structures, it is important

that there is consideration of the likelihood to which price wars will occur over time for the collu-

sive distribution, and this should be compared against the e↵ect of lessing competition through

unilateral e↵ects. Our models suggests that prices will be lower for the noncollusive asymmetric

distribution if demand fluctuations are small, otherwise the symmetric collusive distribution has

lower prices.

4 An Example

We complement our general results by analysing an example to show that symmetric collusive

capacity distributions can have substantially lower average prices than asymmetric noncollusive

capacity distributions. In our example, we suppose that total capacity is K = 100 and that this

there are examples where insiders’ post-merger capacity or market shares fall as a result of a divestment remedy

(see Compte et al., 2002; and Davies and Olczak, 2010).
14Clearly, such a merger would also increase the average price post-merger, if collusion is not sustainable pre-

or post-merger. This is not illustrated in Figure 2 to highlight the most interesting case.
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Figure 3: G(m) = m�m

m�m

, bm = 92, K�1

 5

6

(100) < 100 = K, and � ! 1

is divisible into 6 equal sized parts. There is an asymmetric triopoly pre-merger, denoted (1/6,

2/6, 3/6), where firm 1 has 1/6 of this capacity, firm 2 has 2/6 and firm 3 has 3/6. We then

consider three alternative merger outcomes: a symmetric duopoly, (3/6, 3/6), resulting from a

merger between firms 1 and 2; an asymmetric duopoly, (2/6, 4/6), created by a merger between

firms 1 and 3; and a very asymmetric duopoly (1/6, 5/6), resulting from a merger between firms

2 and 3. An alternative way to consider these outcomes is that, for a given merger, the other

duopoly outcomes arise from firms divesting capacities as remedies for anti-competitive e↵ects.15

We analyse the e↵ects of such mergers on the expected consumer surplus per unit of the

most profitable equilibrium, denoted CS (bp⇤) ⌘ 1� bp⇤. The preceding analysis implies that bp⇤ is

the static Nash equilibrium average price if collusion is not sustainable, otherwise it is the best

average price or the monopoly price. Figure 3 plots CS (bp⇤) as a function of �m ⌘ m�m

bm for

the various scenarios assuming demand is drawn from a uniform distribution. Parameter values

are chosen such that bm = 92 for all �m and that K�1

 5

6

(100)  m  m  K = 100, so

Assumption 1 holds. We let � ! 1 such that collusion is not sustainable only if m � x (k
1

, k
n

) .16

Finally, the analysis above implies that each merger is privately optimal whenever CS (bp⇤) is

15For example, (3/6, 3/6) and (2/6, 4/6) could result from a remedy of the merger that creates (1/6, 5/6), in

which capacity of the merged entity is divested to firm 1 to remedy concerns of unilateral e↵ects. This is similar

to what happened in the Nestlé/Perrier merger analysed by Compte et al. (2002), for example.
16For � < 1, the only di↵erence is that there is a discontinuity in CS (bp⇤) at the threshold where collusion is

not sustainable. Thus, the line jumps to the CS (bp⇤) associated with the static Nash equilibrium for a lower level

of �m.
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strictly lower post-merger than pre-merger.

Each of the plotted lines in Figure 3 has a similar shape. When CS (bp⇤) = 0, monitoring

is perfect and the average price is pm. When CS (bp⇤) is upward-sloping, there is imperfect

monitoring and the best average price is strictly decreasing in �m. When CS (bp⇤) is positive

and constant, collusion is not sustainable. Furthermore, note that comparing (1/6, 2/6, 3/6) to

(3/6, 3/6) in Figure 3 is consistent with moving horizontally from left to right on Figure 2(a) for

� ! 1, because only the capacity of the smallest firm changes. Likewise, comparing (1/6, 2/6,

3/6) to (1/6, 5/6) is consistent with moving horizontally from left to right on Figure 2(b) for

� ! 1, because only the capacity of the largest firm changes. For (2/6, 4/6), both the capacities

of the smallest and the largest firms are larger than compared with (1/6, 2/6, 3/6).

Figure 3 shows that each merger outcome lowers CS (bp⇤) compared to pre-merger for some

levels of �m. Of particular interest is that the merger that creates a very asymmetric duopoly

(1/6, 5/6) can reduce per-unit consumer surplus post-merger, even if it destabilises pre-merger

collusion. This occurs at approximately �m = 0.025 and the expected per-unit consumer surplus

for (1/6, 5/6) can be less than 1/4 of its value pre-merger. Furthermore, Figure 3 also shows that

the merger that creates a symmetric duopoly (3/6, 3/6) can reduce consumer surplus less than the

other mergers that create asymmetric duopolies, even though collusion is not sustainable for the

latter but it is for the former. For example, at around�m = 0.09, the expected per-unit consumer

surplus for (3/6, 3/6) is approximately four times its value for (1/6, 5/6) and two times greater

than for (2/6, 4/6). This implies, for the merger that creates the very asymmetric duopoly (1/6,

5/6), that it would be appropriate over this range to divest capacity from the merging parties

to their smaller rival to remedy concerns of unilateral e↵ects, even if this facilitates collusion.

Such remedies would not be implemented if the conventional wisdom were followed.17 More

generally, Figure 3 shows that the competitive prices of asymmetric capacity distributions can

be substantially lower than collusive prices of less asymmetric capacity distributions.

5 Extension

Up to this point, consistent with Tirole (1988), we have restricted attention to a setting in which

each firm will meet all demand up to its capacity in any given period (see also Campbell et al.,

17Equally, the reverse is also true: for the merger that creates a symmetric duopoly (3/6, 3/6), it would be

inappropriate over this range to divest capacity from the merging parties to what would become the largest firm

to remedy concerns of coordinated e↵ects.
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2005, and Amelio and Biancini, 2010). This is likely to be an appropriate assumption for many

markets, including those where collusive prices are agreed at the senior management level, and

total output is determined at a lower level by sales representatives (who may be unaware of the

collusion).18 Nevertheless, this is an important assumption because it ensures that a firm cannot

hide a deviation from its rivals by limiting how much it sells in an attempt to reduce the resultant

expected punishment. This could be achieved if firms were either able to limit the number of

units available at the deviation price or able to undercut rivals on only a subset of buyers. This

is the issue we explore in this section. In particular, we demonstrate that our main results are

robust to this setting under certain conditions.

To adapt our model to such a setting, initially suppose that each firm still sets one price.

Buyers can now place orders with any firm with spare capacity and each firm can select how many

orders to supply. Demand is again allocated by the proportional rationing rule. Thus, under

Assumption 1, it follows that the amount of orders firm i will receive in period t, d
it

(p
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t
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In this setting, the residual market demand that is shared between the highest-priced firms

is increased if the lowest-priced firms do not supply all orders,
P

j2⌦(pit)
s
jt

<
P

j2⌦(pit)
k
j

.

Furthermore, suppose that firms may inadvertently overproduce when they try to restrict sales

below orders and that it is common knowledge that they can only be sure of limiting their sales

to some k
i

, such that 0  k
i

< k
i

. Such overproduction may result from over-zealous sales

representatives, for example.19 For simplicity, assume k
i

= �k
i

for all i, where 0  � < 1, so

this extension converges to the main analysis as � ! 1. This then resembles a setting where

large firms find it more di�cult to limit their sales below orders in absolute terms compared to

smaller firms. This may be the case, for example, if each firm must restrict the total output

of their sales representatives, who may be separated geographically throughout the market, and

larger firms have more sales representatives, which makes this task more problematic. All other

assumptions are unchanged.

To establish that there is a public history in this case, consider the history ht = (y
0

, y
1

, . . . , y
t�1

)

18This is the setting for many, if not most, cartels (see Harrington, 2006, for evidence from Europe).
19Indeed, sales representatives were to blame for overproduction in a number of European cartels between

1999-2004 (see Harrington, 2006, p.49-51).

25



such that, for all ⌧ = {0, 1, . . . , t� 1}:
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where firm i’s trigger level is d⇤
i

= ki
K

m⇤ (k
l

,m, �) for all i and m⇤ (k
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,m, �) ⌘ K(m��k
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)
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. Such

trigger levels are determined by the largest possible orders firms i 6= l receive if all such firms set

the same price and firm l undercuts and supplies just �k
l

. Such deviations by the smallest firm

are most di�cult to detect if � > m

K

, so k
l

= k
1

, otherwise it is most di�cult to monitor the

largest firm, in which case k
l

= k
n

. It then follows from (10) that such trigger levels guarantee

that at least one firm will always receive orders below their trigger level, if all firms do not set a

common price. This implies that ht is a public history because each firm knows that all firms’

orders will exceed such trigger levels, only if p
j

= p  1 for all j and if m > m⇤ (k
l

,m, �), so

y = y; otherwise, at least one firm’s orders will not exceed its trigger level, so y = y.20

Moving on to the equilibrium payo↵s, first notice that the above implies that monitoring is

perfect if m⇤ (k
l

,m, �) < m. Otherwise, there is imperfect monitoring, where the probability of

observing y is:

Pr
�
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,p�i
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l

,m, �)) =
´
min{m⇤
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1 otherwise.
(11)

Thus, it follows that Pr
�
y|p

�
< 1 if and only if � > m

K

> 0. Otherwise, collusion is not sustainable

from the fact that ✓ = �, so (6) cannot hold. An implication of this is that deviations by the

smallest firm are always most di�cult to detect in any SPPE. We can again solve for the set of

SPPE payo↵s by finding the highest and lowest SPPE values using the constrained optimisation

problem described in section 3.2. As before, firm i’s optimal deviation profits from any common

price p  1 are given by (9), where it will supply its full capacity if it undercuts a su�ciently high

collusive price. The reason is that a deviant cannot reduce the resultant expected punishment

by limiting its sales below orders. This is due to the fact that the new trigger levels imply that

20Let us briefly return to the case where firms are able to undercut rivals on only a subset of buyers. In such

a case, a deviant j could undercut to supply �kj and also supply its proportion of the residual demand at the

collusive price. Nevertheless, this would reduce its rivals’ sales further below their trigger levels, d⇤i , than just

supplying �kj . Thus, our analysis here also encompasses the case where firms can charge di↵erent prices to

di↵erent buyers. The reason is that, when firms can charge more than one price, the most devious deviation is

to undercut the collusive price to supply �kj and to charge a price above 1 to all others so they order from other

firms.
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any such deviations are also now consistent with a bad signal y, so they will be punished in the

same way as larger deviations.21 It also follows from this that we again only need consider the

collusive period ICC for some firm i and the punishment period ICC for firm n.

Proposition 6 solves for the highest and lowest SPPE payo↵s given there is imperfect moni-

toring. As before, the set of symmetric SPNE can easily be generated under perfect monitoring

by setting G (m⇤ (k
1

,m, �)) = 0 in the below.

Proposition 6. For any given n � 2, K�1
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Punishment periods on the equilibrium path occur more often than in the main analysis,

because the trigger levels are higher to ensure firms cannot gain by limiting their sales below

orders. It follows from this that the highest SPPE payo↵s are lower and the critical discount factor

is higher than in the main analysis under imperfect monitoring. Yet, the comparative statics are

the same as in section 3.3.22 Finally, the fact that collusion under imperfect monitoring is less

profitable in this setting implies that the competitive prices of asymmetric distributions exceeds

the collusive prices of a less asymmetric distribution for smaller fluctuations in market demand

than in Proposition 5. As a result, the conventional wisdom that coordinated e↵ects are more

harmful than unilateral e↵ects is less likely to be true.

21However, notice that if the triggers levels were the same as in the main text, then any firm could deviate by

limiting their sales below orders.
22It should be noted that the fact that the smallest firm matters relies on the assumption that small firms can

lower their sales more than larger firms. Instead, if ki = k for all i, where 0  k  k1, then the equilibrium profits

and the critical discount factor would only depend upon the largest firm. Though following the same steps as set

out here, it is easy to see that collusion is sustainable under similar conditions.
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6 Concluding Remarks

We have explored the e↵ects of asymmetries in capacity constraints on collusion in a setting

where there is demand uncertainty and where firms never directly observe their rivals’ prices and

sales. Despite the fact that each firm must monitor the collusive agreement using their privately

observed prices and sales, we have showed that firms can perfectly detect deviations if demand

fluctuations are su�ciently small, and that the critical level is determined by the capacity of

the smallest firm. Otherwise, monitoring is imperfect and punishment phases must occur on the

equilibrium path. We found that asymmetries between the largest and the smallest firm always

hinder collusion. Yet, we also analysed both the unilateral and coordinated e↵ects of mergers in

a unified framework. We showed, in contrast to the conventional wisdom, that the competitive

prices of asymmetric capacity distributions are substantially higher than the collusive prices of

less asymmetric capacity distributions, if demand fluctuations are su�ciently large.

Our results have three implications for merger policy. First, although market transparency

is rightly an important criterion in the assessment of coordinated e↵ects in practice, our model

re-emphasises the fact that a lack of transparency about rivals’ prices and sales is not a su�cient

condition to rule out such e↵ects. It is also necessary to check that firms are unable to detect

deviations using only their own sales. Second, while the possible e↵ects of imperfect monitoring

are explicitly mentioned in general terms in the most recent US and European horizontal merger

guidelines, our model suggests that such monitoring will be more di�cult if the market structure

is more asymmetric. Finally, symmetric merger outcomes where collusion is thought to be a

problem should not be presumed to be more harmful than asymmetric merger outcomes where

collusion is not considered a problem. A collusive agreement may require su�ciently frequent

price wars that actually lead to higher consumer surplus than compared to an alternative outcome

in which one firm’s market power is strengthened unilaterally. This is more likely, according to

our model, when market demand fluctuates to a large extent over time.

References

[1] Abreu, D., Pearce, D. and Stacchetti, E. (1986) “Optimal Cartel Equilibria with Imperfect

Monitoring,” Journal of Economic Theory, 39(1), 251-269

[2] Abreu, D., Pearce, D. and Stacchetti, E. (1990) “Toward a Theory of Discounted Repeated

Games with Imperfect Monitoring,” Econometrica, 58(5), 1041-1063

28



[3] Amelio, A., and Biancini, S. (2010) “Alternating Monopoly and Tacit Collusion,” Journal

of Industrial Economics, 58(2), 402-423

[4] Bos, I. and Harrington, J. (2010) “Endogenous Cartel Formation with Heterogeneous

Firms,” RAND Journal of Economics, 41(1), 92–117

[5] Bos, I. and Harrington, J. (2014) “Competition Policy and Cartel Size,” International Eco-

nomic Review, forthcoming

[6] Campbell, C., Ray, G., and Muhanna, W. (2005) “Search and Collusion in Electronic Mar-

kets.” Management Science, 51, 497–507

[7] Compte, O., Jenny, F. and Rey, P. (2002) “Capacity Constraints, Mergers and Collusion,”

European Economic Review, 46(1), 1-29

[8] Dasgupta, P. and Maskin, E. (1986) “The Existence of Equilibrium in Discontinuous Eco-

nomic Games, II: Applications” Review of Economic Studies, 53(1), 27-41

[9] Davies, S. and Olczak, M. (2010) “Assessing the E�cacy of Structural Merger Remedies:

Choosing Between Theories of Harm?” Review of Industrial Organization, 37(2), 83-99

[10] Davies, S., Olczak, M., and Coles, H. (2011) “Tacit Collusion, Firm Asymmetries and Num-

bers: Evidence from EC Merger Cases,” International Journal of Industrial Organization,

29(2), 221-31

[11] Fabra, N. (2006) “Collusion with Capacity Constraints over the Business Cycle,” Interna-

tional Journal of industrial Organization, 24(1), 69-81

[12] Farrell, J. and Shapiro, C. (1990) “Horizontal Mergers: An Equilibrium Analysis,” American

Economic Review, 80(1), 107-126

[13] Fonseca, M. and Normann, H.-T. (2008) “Mergers, Asymmetries and Collusion: Experi-

mental Evidence,” Economic Journal, 118(1), 287-400

[14] Fonseca, M. and Normann, H.-T. (2012) “Explicit vs. Tacit Collusion – The Impact of

Communication in Oligopoly Experiments,” European Economic Review, 56(8), 1759-1772

[15] Fudenberg, D. and Tirole, J. (1994), Game Theory, MIT Press

[16] Gal-Or, E. (1984) “Price Dispersion with Uncertain Demand,” International Economic Re-

view, 25(2), 441-457

29



[17] Green, E. and Porter, R. (1984) “Non-Cooperative Collusion under Imperfect Price Infor-

mation,” Econometrica, 52, 87-100

[18] Harrington, J. (2006) “How do Cartels Operate?” Foundations and Trends in Microeco-

nomics, 2(1), 1-105

[19] Harrington, J. and Skrzypacz, A. (2007) “Collusion under Monitoring of Sales,” RAND

Journal of Economics, 38(2), 314-331

[20] Harrington, J. and Skrzypacz, A. (2011) “Private Monitoring and Communication in Cartels:

Explaining Recent Collusive Practices,” American Economic Review, 101(6), 2425-2449

[21] Ivaldi, M., Jullien, B., Rey, P., Seabright, P., and Tirole, J. (2003a) “The Economics of

Tacit Collusion,” Report for DG Comp, European Commission

[22] Ivaldi, M., Jullien, B., Rey, P., Seabright, P., and Tirole, J. (2003b) “The Economics of

Unilateral E↵ects,” Report for DG Comp, European Commission

[23] Knittel, C. and Lepore, J. (2010) “Tacit Collusion in the Presence of Cyclical Demand

and Endogenous Capacity Levels,” International Journal of Industrial Organization, 28(2),

131-144
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Appendix A

Proof of Lemma 1. There exists a unique pure strategy Nash equilibrium if m � K, where
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firm i has an incentive to lower its price, since ⇡
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(p) if m < K, where ✏ > 0 but

small. Moreover, for p = 0, firm i has an incentive to raise its price, since Assumption 1 ensures

⇡
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(✏, 0) > 0 8 i.

Nevertheless, if K > m � K�1

, the existence of a mixed strategy Nash equilibrium is guaran-

teed by Thereom 1 of Dasgupta and Maksin (1986). To characterise this equilibrium, let H
i

(p)

denote the probability that firm i charges a price less than or equal to p. Below we demonstrate

that the equilibrium profits are given by (2) for all i and that:
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where firm i’s expected profits are given by ⇡
i

in (3), if it is strictly the highest-priced firm with

p
i

= 1. This converges to the analysis in Fonseca and Normann (2008) as m ! m.

In equilibrium, firm i must receive the following expected profit from charging p  1:

p

0

@
Y

j 6=i

H
j

(p)⇡
i

+

0

@1�
Y

j 6=i

H
j

(p)

1

A k
i

1

A =
k
i

k
n

⇡
n

, 8 i (13)

where
Q

j 6=i

H
j

(p) is the probability that firm i is the highest-priced firm. To solve for the right-

hand side of (13), notice firm i has no incentive to price below ⇡
i

/k
i

⌘ p
i

, where p
n

� p
n�1

�
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. . . � p
1

. Moreover, any firm j < n can guarantee profits of kj

kn
⇡
n

� ⇡
j

by charging a price

marginally below p
n

, so all firms have no incentive to price below p
n

. Finally, the fact that all

firms j < n place positive probability on charging p
n

is necessary and su�cient to ensure p
n

is

also the lowest price that firm n will charge. Thus, the lower bound of H
i

(p) is p = p
n

= ⇡
n

/k
n

8 i. Manipulating (13) yields:

H
i

(p) =
pk

n

(⇡
i

� k
i

)

⇡
n

� pk
n

Y

j

H
j

(p)
1

k
i

. (14)

Noting that ⇡
i

� k
i

=
´
min{K,m}
m

(m�K) g (m) dm 8 i for any K > m from (3), it follows from

(14) that:

Y

j

H
j

(p) =

2

4
pk

n

⇣´
min{K,m}
m

(m�K) g (m) dm
⌘

⇡
n

� pk
n

Y

j

H
j

(p)

3

5

n

nY

l=1

✓
1

k
l

◆
.

Thus, solving for
Q

j

H
j

(p) and substituting into (14) shows that H
i

(p) is as claimed in (12).

It follows from (12) that H
i

(1) Q 1 if
k

n�1

iQ
j 6=n kj

R 1. This has two implications. First, if

k

n�1

iQ
j 6=n kj

� 1, then firm i randomises over
⇥
p, 1

⇤
and puts mass of 1�H

i

(1) on a price of 1 when

the inequality is strict. Note that
k

n�1

iQ
j 6=n kj

> 1 never holds if k
i

= k 8 i but always holds for

firm n if k
n

> k
1

. Second, if
k

n�1

iQ
j 6=n kj

< 1 for some i < n, then firm i randomises over
⇥
p, p

i

⇤

where p
i

< 1 solves H
i

(p
i

) = 1. Consequently, the probability distributions of the larger firms

with higher upper bounds must be adjusted accordingly. For example, if p
i

< 1 only for firm

1 (which is the case for any triopoly with k
1

< k
2

), then the largest n � 1 firms play with the

H
i

(p) adjusted so that n� 1 replaces n over [p
1

, 1]. Note that
k

n�1

iQ
j 6=n kj

< 1 never holds if n = 2

or if k
i

= k 8 i for any n � 2. ⌅

Proof of Proposition 1. There is perfect monitoring if m > m⇤ (k
1

,m) and imperfect monitoring

otherwise. Given @m

⇤

@m

> 0, it follows that there is a unique level of m that solves m⇤ (k
1

,m) = m.

Substituting in for m⇤ (k
1

,m) and rearranging yields m = k
1

+mK�1

K

⌘ x (k
1

), where x (k
1

) 2

(m,K) for any m < K. Thus, monitoring is perfect if m < x (k
1

), as this implies m > m⇤ (k
1

,m).

Otherwise, there is imperfect monitoring. ⌅

Proof of Proposition 2. The Lagrangean function for our constrained maximisation problem is:

L = V + �⇠c
i

+ µ⇠p
n
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where ⇠c
i

and ⇠p
n

denote the slack in the collusive phase and the punishment phase ICCs for firm

n, respectively, such that

⇠c
i

⌘ (1� �)
�
� (⇡

i

(p⇤
i

, pc)� ⇡
i

(pc)) + � (� � ↵)
�
1� Pr

�
y|p

��
[⇡

i

(pc)� ⇡
i

(pp)]
�

⇠p
n

⌘ (1� �)
�
� (⇡

i

(p⇤
i

, pp)� ⇡
n

(pp)) + � (� � ↵)
�
1� Pr

�
y|p

��
[⇡

n

(pc)� ⇡
n

(pp)]
�
.

and where

V = (1� �) bm
K

pc + �
⇥
✓ bm
K

pp + (1� ✓) bm
K

pc
⇤

V = (1� �) bm
K

pp + �
⇥
✓ bm
K

pp + (1� ✓) bm
K

pc
⇤
.

We proceed by solving the constrained maximum for a given pc, to see explicitly how the ex-

pected profits and critical discount factor vary with pc. Thus, the Kuhn-Tucker conditions for a

maximum are:

@L

@z
=

@V

@z
+ �

@⇠c

@z
+ µ

@⇠p
n

@z
 0, z � 0, z

@L

@z
= 0 for z = ↵,�

@L

@pp
=

@V

@pp
+ �

@⇠c

@pp
+ µ

@⇠p
n

@pp
= 0

@L

@�
= ⇠c � 0, � � 0, �

@L

@�
= 0

@L

@µ
= ⇠p

n

� 0, µ � 0, µ
@L

@µ
= 0.

We begin by establishing that the Kuhn-Tucker conditions are satisfied if @L

@�

= ⇠c = 0 and

@L

@µ

= ⇠p
n

� 0 where ↵⇤ = 0 and �⇤ > 0. First, notice @L

@↵

= @V

@↵

+ �@⇠

c

@↵

+ µ
@⇠

p
n

@↵

< 0 from

@V

@↵

< 0, @⇠

c

@↵

< 0, @⇠

p
n

@↵

< 0, � � 0 and µ � 0. So, ↵⇤ = 0. Furthermore, � > 0 is a necessary

condition for @L

@�

= ⇠c � 0 and @L

@µ

= ⇠p
n

� 0, and this implies @L

@�

= 0. Solving for the latter and

rearranging shows � = 1

ki(1��)

Pr(y|p)
1�Pr(y|p)

� kn
ki
µ. Substituting this into @L

@p

p = 0 yields µ = 0, so

� = 1

ki(1��)

Pr(y|p)
1�Pr(y|p)

> 0. These values imply @L

@µ

= ⇠p
n

� 0 and @L

@�

= ⇠c = 0, respectively, where

⇠c = 0 if � = 1

�(1�Pr(y|p))

⇣
⇡i(p

⇤
i ,p

c
)�⇡i(p

c
)

⇡i(p
c
)�⇡i(p

p
)

⌘
⌘ �⇤ > 0.

To solve for V and V , first substitute �⇤ and ↵⇤ into V to get V = 1

K

⇣
bm�G(m

⇤
)K

1�G(m

⇤
)

⌘
pc, where

Pr
�
y|p

�
= G (m⇤) from (5). This is maximised for pc = 1, so k

i

V is as claimed. Substituting

this into V then yields k
i

V = k
i

V � (1� �) ki
kn

(K � bm). Furthermore, �⇤ (k
1

, k
n

) is obtained

from the fact that �⇤  1 if � � 1

(1�G(m

⇤
))

K�bm
bm(p

c�p

p
)

. This is minimised when pp is set as low

as possible to the extent that ⇠p
n

= 0. Notice ⇠p
i

> ⇠c
i

if pp > ⇡i
ki
, which implies ⇠p

n

> ⇠c
n

= 0 8

pp > ⇡n
kn

= p. Thus, consider pp  p where ⇡
n

(p⇤
n

, pp) = ⇡
n

from (9). Substituting �⇤ and ↵⇤

into ⇠p
n

shows ⇠p
n

� 0 if pp � pc � K

bm
�
pc � p

�
⌘ p⇤, where p⇤ < p 8 pc > p and where p⇤ � 0 if
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bm � K

2

K+kn
. Letting pp = p⇤ such that ⇠p

n

= 0 yields �⇤  1 if � � 1

(1�G(m

⇤
))

K�bm
K(pc�p)

. The latter

is minimised for pc = 1, so �⇤ (k
1

, k
n

) is as claimed, where �⇤ (k
1

, k
n

) < 1 if G (m⇤) < 1� kn
K

.

Finally, it follows from @G(m

⇤
)

@m

> 0 that there is a unique level of m, denoted x (k
1

, k
n

), that

sets G (m⇤ (k
1

,m)) = 1 � kn
K

< 1, where x (k
1

, k
n

) < K and where G (m⇤ (k
1

,m)) 2
⇥
0, 1� kn

K

�

for all m 2 [x (k
1

) , x (k
1

, k
n

)). This implies �⇤ (k
1

, k
n

) 2
�
kn
K

, 1
�
, k

i

V 2
�
⇡N

i

(k
i

, k
n

, bm) , ki
K

bm
�

and k
i

V 2
�
⇡N

i

(k
i

, k
n

, bm) , ki
K

V
�
for all m 2 [x (k

1

) , x (k
1

, k
n

)). ⌅

Proof of Proposition 3. Di↵erentiating �⇤ (k
1

, k
n

) = 1

(1�G(m

⇤
(k

1

,m)))

kn
K

with respect to k
j

yields:

@�⇤

@k
j

=
1

K [1�G (m⇤)]


@k

n

@k
j

+ k
n

g (m⇤)

1�G (m⇤)

@m⇤

@k
j

�
.

Thus, @�

⇤

@k

1

< 0 from @kn
@k

1

2 [�1, 0] and @m

⇤

@k

1

= �K(K�m)

(K�k

1

)

2

< 0, and @�

⇤

@kn
> 0 from @kn

@kn
= 1 and

@m

⇤

@kn
= 0. Finally, �⇤ (k

n

) = kn
K

implies @�

⇤

@kn
> 0. ⌅

Proof of Proposition 4. It follows that:

bpc (k
1

,m) =
K

bmV =
bm�G (m⇤ (k

1

,m))K

bm (1�G (m⇤ (k
1

,m)))
,

where bpc (k
1

,m) 2
�
bpN (k

n

, bm) , pm
�
from k

i

V 2
�
⇡N

i

(k
i

, k
n

, bm) , ki
K

bm
�
. Di↵erentiating bpc (k

1

,m)

with respect to k
j

yields:
@bpc

@k
j

= � (K � bm) g (m⇤)

bm (1�G(m⇤))2
@m⇤

@k
1

@k
1

@k
j

.

Thus, @bpc

@k

1

> 0 since 0 < bm < m < K, @m

⇤

@k

1

< 0 and @k

1

@k

1

= 1, and @bpc

@kj
 0 for j 6= 1 from

@k

1

@kj
2 [�1, 0], where @bpc

@kj
= 0 if @k

1

@kj
= 0. ⌅

Proof of Proposition 5. We first show that bpN (k0
n

, bm) > bpc (k
1

,m) if m > x (k
1

, k0
n

) . This follows

since bpN (k0
n

, bm) > bpc (k
1

,m) if G (m⇤ (k
1

,m)) > 1� k

0
n
K

. In Proposition 2, x (k
1

, k
n

) is defined as

the level of m that solves G (m⇤ (k
1

, x (k
1

, k
n

))) = 1� kn
K

. Thus, G (m⇤ (k
1

, x (k
1

, k0
n

))) = 1� k

0
n
K

.

This and @G(m

⇤
)

@m

> 0 implies G (m⇤ (k
1

,m)) > 1� k

0
n
K

for any m > x (k
1

, k0
n

), where bpN (k0
n

, bm) >

bpc (k
1

,m). This comparison is only meaningful if m < x (k
1

, k
n

) and if � � �⇤ (k
1

, k
n

) such

that bpc (k
1

,m) is an equilibrium average price. So, we next show that x (k
1

, k0
n

) < x (k
1

, k
n

) if

k0
n

> k
n

. Using the implicit function theorem on Z ⌘ 1� kn
K

�G (m⇤ (k
1

,m)) = 0 yields:

@x

@k
j

= �
@Z

@kj

@Z

@m

= � 1�
g (m⇤) @m

⇤

@m

�
✓

1

K

@k
n

@k
j

+ g (m⇤)
@m⇤

@k
1

@k
1

@k
j

◆
.
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Thus, @x

@kn
< 0 from @m

⇤

@m

> 0, @kn
@kn

= 1, @m

⇤

@k

1

< 0 and @k

1

@kn
2 [�1, 0]. So, x (k

1

, k0
n

) < x (k
1

, k
n

) if

k0
n

> k
n

. Thus, the above implies that if k0
n

> k
n

, then bpN (k0
n

, bm) > bpc (k
1

,m), if x (k
1

, k0
n

) <

m < x (k
1

, k
n

) for any � � �⇤ (k
1

, k
n

). Finally, notice that collusion is not sustainable for (k0
1

, k0
n

)

for any x (k
1

, k0
n

) < m < x (k
1

, k
n

) from Proposition 2, because x (k0
1

, k0
n

)  x (k
1

, k0
n

) < m from

@x

@k

1

> 0. ⌅

Proof of Proposition 6. The Lagrangean function and the Kuhn-Tucker conditions for this con-

strained maximisation problem are the same as in the proof of Proposition 2. The only change

is that Pr
�
y|p

�
= G (m⇤ (k

1

,m, �)) from (11). Thus, given the proof of Proposition 2 is initially

written in terms of Pr
�
y|p

�
, it follows immediately that the Kuhn-Tucker conditions are satisfied

if @L

@�

= ⇠c
i

= 0 and @L

@µ

= ⇠p
n

� 0 where ↵⇤ = 0 and �⇤ = 1

�(1�Pr(y|p))

⇣
⇡i(p

⇤
i ,p

c
)�⇡i(p

c
)

⇡i(p
c
)�⇡i(p

p
)

⌘
> 0.

Following the other steps of the proof of Proposition 2, but with Pr
�
y|p

�
= G (m⇤ (k

1

,m, �)) in

this case, shows that k
i

V , k
i

V and �⇤ (k
1

, k
n

, �) are as claimed.

Furthermore, monitoring is perfect if m⇤ (k
1

,m, �) < m, which implies that there is im-

perfect monitoring if m � mK�1

K

+ �k
1

⌘ x (k
1

, �), where G (m⇤ (k
1

, x (k
1

, �) , �)) = 0 and

m < x (k
1

, �) < �K. Finally, from @G(m

⇤
)

@m

> 0 there is a unique level of m, denoted x (k
1

, k
n

, �),

that sets G (m⇤ (k
1

,m, �)) = 1� kn
K

< 1, where x (k
1

, k
n

, �) < �K and where G (m⇤ (k
1

,m, �)) 2
⇥
0, 1� kn

K

�
for all m 2 [x (k

1

, �) , x (k
1

, k
n

, �)). This implies �⇤ (k
1

, k
n

, �) 2
�
kn
K

, 1
�
, k

i

V 2
�
⇡N

i

(k
i

, k
n

, bm) , ki
K

bm
�
and k

i

V 2
�
⇡N

i

(k
i

, k
n

, bm) , ki
K

V
�
for all m 2 [x (k

1

, �) , x (k
1

, k
n

, �)). ⌅

Appendix B

To check the robustness of our main results, we solve the game following the approach of Tirole

(1988). In his setting, there are two symmetric firms selling a homogeneous product, without

capacity constraints, and there is a chance that market demand is either high or zero. There

is imperfect monitoring, because a firm cannot be sure that making zero sales is caused by low

market demand or is due to a deviation by its rival. Consequently, firms follow a strategy profile

in which they set the monopoly price until at least one firm receives zero sales. Then they play

the static Nash equilibrium for T periods, after which they return to setting the monopoly price

and the sequence repeats.23

23Notice that the event that triggers the T period punishment is common knowledge. If a firm makes zero sales

because market demand is zero, its rival will also make zero sales. In contrast, if a firm makes zero sales because

its rival deviated and demand is high, then the deviant makes twice the sales it would have had it set the collusive
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To replicate this approach, we consider the following strategy profile, which we refer to as

the Tirole (1988) strategy profile. There are “collusive phases” and “punishment phases”. In a

collusive phase, firms sets the monopoly price, pm = 1. If y
t

= y such that all firms received

sales above their trigger levels, the collusive phase continues into the next period t+1. If y
t

= y

such that at least one firm received sales below its trigger level, firms enter a punishment phase

in the next period, in which they play the static Nash equilibrium for T periods, after which

a new collusive phase begins and the sequence repeats. In contrast to the analysis in section

3.2, the Tirole (1988) strategy profile is not strongly symmetric, it does not require a public

randomisation device, and it always has prices above marginal cost in a punishment phase.

Finally, we impose K�1

 m < K such that Assumption 1 is satisfied and the Nash equilibrium

is in mixed strategies. We also let m < x (k
1

)  m to restrict attention to imperfect monitoring,

since it is trivial to see that our results hold for trigger strategies under perfect monitoring.

Denoting firm i’s expected (normalised) profit in a collusive phase as vc
i

and its expected

(normalised) profit at the start of a punishment phase as vp
i

, it follows that:

vc
i

= (1� �)⇡
i

(pm) + � [(1�G (m⇤ (k
1

,m))) vc
i

+G (m⇤ (k
1

,m)) vp
i

]

vp
i

= (1� �)
P

T�1

t=0

�t⇡N

i

(k
i

, k
n

, bm) + �T vc
i

where ⇡
i

(pm) > vc
i

> vp
i

for any T > 0 and where vp
i

> ⇡N

i

(k
i

, k
n

, bm) for any T < 1. The

Tirole (1988) profile of strategies is a PPE if, for each date t and any history ht, the strategies

yield a Nash equilibrium from that date on. Since firms play the static Nash equilibrium during

each period of the punishment phase, it is clear that they have no incentive to deviate in any

such periods. Thus, we need only consider deviations during a collusive phase.

Firm i will not deviate in any collusive phase if it cannot gain by marginally undercutting

pm to supply its full capacity k
i

. This provides the following ICC for firm i:

vc
i

� (1� �)⇡d

i

+ �vp
i

. (15)

where ⇡d

i

= k
i

> ⇡
i

(pm) for all m < K. Notice that (15) is never satisfied for any m � K, as

then G (m⇤ (k
1

,m)) = 1 from (5). Thus, we can henceforth focus on the case where m < K.

Substituting vp
i

into vc
i

and solving yields:

vc
i

= ⇡N

i

(k
i

, k
n

, bm) +
(1� �)

1� � +G (m⇤ (k
1

,m)) � (1� �T )

�
⇡
i

(pm)� ⇡N

i

(k
i

, k
n

, bm)
�
.

It is then helpful to let vc
i

= k
i

V c, such that V c ⌘ 1

K

P
i

vc
i

, so we can rewrite (15) as:

k
i

V c

�
1� �T+1

�
� (1� �) k

i

+ �
�
1� �T

� k
i

k
n

(bm�K�n

) . (16)

price, and from this information it can infer that its rival made no sales.
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Since the k
i

’s cancel it follows that if the collusive period ICC holds for firm i, then it also holds

for all other firms j 6= i. Substituting k
i

V c into (16) and rearranging yields:

�T  k
n

� �K (1�G (m⇤ (k
1

,m)))

� [k
n

�K (1�G (m⇤ (k
1

,m)))]
. (17)

It follows from this that firms will not deviate from pm in a collusive phase for a su�ciently

large T , if both the numerator and the denominator of (17) are negative. This is true if � �
1

(1�G(m

⇤
(k

1

,m)))

kn
K

= �⇤ (k
1

, k
n

) and if G (m⇤ (k
1

,m)) < 1 � kn
K

, where G (m⇤ (k
1

,m)) < 1 � kn
K

ensures �⇤ (k
1

, k
n

) < 1.

Thus, similar to Tirole (1988), there are three necessary conditions that must be satisfied.

First, the length of the punishment phase must be su�ciently long, where the critical length,

denoted T ⇤ (k
1

, k
n

), is implicitly defined by the level of T where (17) holds with equality. Second,

firms must also be su�ciently patient, where T ⇤ (k
1

, k
n

) ! 1 if � = �⇤ (k
1

, k
n

) and T ⇤ (k
1

, k
n

) <

1 for any � > �⇤ (k
1

, k
n

). This implies that even a punishment phase that lasts an infinite

number of periods is insu�cient to outweigh the short-term benefit from deviating, if firms

are not su�ciently patient. Third, the maximum market demand must be su�ciently low,

otherwise G (m⇤ (k
1

,m)) so high that (17) cannot hold for any � and T . So, the level of m

that sets �⇤ (k
1

, k
n

) equal to 1 implicitly defines the critical threshold, x (k
1

, k
n

) < K, where

G (m⇤ (k
1

, x (k
1

, k
n

))) = 1� kn
K

< 1. The latter two conditions are the same as in Proposition 2,

and the first condition plays a similar role as �⇤ in the main text.

Finally, given k
i

V c is strictly decreasing in T , the highest equilibrium payo↵s can be found

by evaluating k
i

V c at T ⇤ (k
1

, k
n

). Thus, noting from (17) that:

1� �T
⇤
=

�(1� �)k
n

� [k
n

�K (1�G (m⇤ (k
1

,m)))]
,

we can obtain:

k
i

V c =
k
i

K

✓
bm�G (m⇤ (k

1

,m))K

1�G (m⇤ (k
1

,m))

◆
= k

i

V 8i.

This is the same as the highest SPPE payo↵s in Proposition 2. Thus, the comparative statics

and the implications for mergers are the same for the Tirole (1988) strategy profile as in section

3.3 and 3.4.
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