Opportunism and Insurance in Vertical Contracting

Teis Lunde Lømo
University of Bergen and BECCLE

NHH, 24.04.2015

Research objective

- Study an upstream firm's ability to exercise market power when information is scarce both in the intermediate and final market

Two issues

Illustration: One upstream supplier offers two-part tariff(s) $w q+F$

Two issues

Illustration: One upstream supplier offers two-part tariff(s) $w q+F$
Insurance in a bilateral relationship

- Want retailer's marginal revenue $=$ supplier's marginal cost $(w=c)$
- Not feasible with a risk averse retailer under uncertainty
- Gives a negative vertical externality $(w>c)$

Two issues

Illustration: One upstream supplier offers two-part tariff(s) $w q+F$
Insurance in a bilateral relationship

- Want retailer's marginal revenue $=$ supplier's marginal cost $(w=c)$
- Not feasible with a risk averse retailer under uncertainty
- Gives a negative vertical externality $(w>c)$

Opportunism in a multilateral relationship

- Want to restrict retail competition $\left(w_{i}>c\right)$
- Not feasible if contract offers are secret among retailers
- Gives a negative contracting externality $\left(w_{i}=c\right)$

Two issues

Illustration: One upstream supplier offers two-part tariff(s) $w q+F$
Insurance in a bilateral relationship

- Want retailer's marginal revenue $=$ supplier's marginal cost $(w=c)$
- Not feasible with a risk averse retailer under uncertainty
- Gives a negative vertical externality $(w>c)$

Opportunism in a multilateral relationship

- Want to restrict retail competition $\left(w_{i}>c\right)$
- Not feasible if contract offers are secret among retailers
- Gives a negative contracting externality $\left(w_{i}=c\right)$

This paper: Externalities can balance each other if faced together

Framework

- One manufacturer M and $n \geq 2$ retailers

Framework

- One manufacturer M and $n \geq 2$ retailers
- M earns

$$
\pi_{M}=\sum_{i} T_{i}-c(\mathbf{q})
$$

where T_{i} is a payment from retailer i and $\mathbf{q}:=\left(q_{1}, . ., q_{n}\right)$

Framework

- One manufacturer M and $n \geq 2$ retailers
- M earns

$$
\pi_{M}=\sum_{i} T_{i}-c(\mathbf{q})
$$

where T_{i} is a payment from retailer i and $\mathbf{q}:=\left(q_{1}, . ., q_{n}\right)$

- Retailer i earns

$$
\pi_{i}=\theta_{i} R_{i}(\mathbf{q})-T_{i}
$$

where $R_{i}(\mathbf{q}):=P(\mathbf{q}) \times q_{i}$ and $\theta_{i} \sim N\left(\mu, \sigma^{2}\right)$ is a state variable

Framework

- One manufacturer M and $n \geq 2$ retailers
- M earns

$$
\pi_{M}=\sum_{i} T_{i}-c(\mathbf{q})
$$

where T_{i} is a payment from retailer i and $\mathbf{q}:=\left(q_{1}, . ., q_{n}\right)$

- Retailer i earns

$$
\pi_{i}=\theta_{i} R_{i}(\mathbf{q})-T_{i}
$$

where $R_{i}(\mathbf{q}):=P(\mathbf{q}) \times q_{i}$ and $\theta_{i} \sim N\left(\mu, \sigma^{2}\right)$ is a state variable

- M is risk neutral, retailer i cares about

$$
u_{i}\left(\pi_{i}\right):=-e^{-r_{i}\left(\theta_{i} R_{i}(\mathbf{q})-T_{i}\right)}
$$

where $r_{i} \geq 0$ is his level of risk aversion

Contracting game

Stage 1. M makes a take-it-or-leave-it-offer to each retailer
Stage 2. Retailers accept/reject after observing only their own offer and make payments accordingly
Stage 3. Retailers observe θ_{i} 's and then put out their quantities

Contracting game

Stage 1. M makes a take-it-or-leave-it-offer to each retailer
Stage 2. Retailers accept/reject after observing only their own offer and make payments accordingly
Stage 3. Retailers observe θ_{i} 's and then put out their quantities

- Retailers have passive beliefs, look for Perfect Bayesian equilibria

Contracting game

Stage 1. M makes a take-it-or-leave-it-offer to each retailer
Stage 2. Retailers accept/reject after observing only their own offer and make payments accordingly
Stage 3. Retailers observe θ_{i} 's and then put out their quantities

- Retailers have passive beliefs, look for Perfect Bayesian equilibria Incomplete-contracting approach: M cannot offer
- State contingent contracts (monitoring costs, moral hazard etc.)
- Multilateral contracts (hard to enforce and possibly illegal)
- Evidence suggests that supply contracts are often fairly simple

Less opportunism

Less opportunism

With point contracts $\left(t_{i}, q_{i}\right), \widehat{q}_{i}$ is defined by M's FOC:

Less opportunism

With point contracts $\left(t_{i}, q_{i}\right), \widehat{q}_{i}$ is defined by M's FOC:

- Insurance term is positive if $r_{i} \sigma^{2}>0$

Less opportunism

With point contracts $\left(t_{i}, q_{i}\right), \widehat{q}_{i}$ is defined by M's FOC:

- Insurance term is positive if $r_{i} \sigma^{2}>0$
- $R_{i}($.$) concave +c($.$) convex \Longrightarrow \widehat{q}_{i}$ lower than 'opportunistic' q_{i}^{*}

Less opportunism

With point contracts $\left(t_{i}, q_{i}\right), \widehat{q}_{i}$ is defined by M's FOC:

- Insurance term is positive if $r_{i} \sigma^{2}>0$
- $R_{i}($.$) concave +c($.$) convex \Longrightarrow \widehat{q}_{i}$ lower than 'opportunistic' q_{i}^{*}
- Outcome is less competitive than in other models
- Hart-Tirole (1990); O'Brien-Shaffer (1992); Rey-Vergé (2004) etc.
- In line with experimental evidence (Martin et al. 2001)

Less opportunism

With point contracts $\left(t_{i}, q_{i}\right), \widehat{q}_{i}$ is defined by M's FOC:

- Insurance term is positive if $r_{i} \sigma^{2}>0$
- $R_{i}($.$) concave +c($.$) convex \Longrightarrow \widehat{q}_{i}$ lower than 'opportunistic' q_{i}^{*}
- Outcome is less competitive than in other models
- Hart-Tirole (1990); O'Brien-Shaffer (1992); Rey-Vergé (2004) etc.
- In line with experimental evidence (Martin et al. 2001)
- Opportunism may be less of a problem in volatile markets

Less opportunism $=$ more profit?

M is not always better off vis-a-vis the opportunism outcome

- Relative strength of vertical externality and contracting externality decides the effect on his profit from giving insurance

Example: effect of more risk aversion

Example: effect of more risk aversion

Differentiating M's equilibrium profit wrt. r_{i} yields

$$
\left.\frac{\partial \pi_{M}}{\partial r_{i}}\right|_{\widehat{\mathbf{q}}}=\overbrace{\frac{\partial R_{i}(\widehat{\mathbf{q}})}{\partial q_{i}} \frac{d \widehat{q}_{i}}{d r_{i}} \beta_{i}}^{\text {loss from retailer } i}+\overbrace{\sum_{k \neq i}\left\{\frac{\partial R_{k}(\widehat{\mathbf{q}})}{\partial q_{i}} \frac{d \widehat{q}_{i}}{d r_{i}} \beta_{i}\right\}}^{\text {gain from retailers } k \neq i}-\overbrace{\frac{\partial c(\widehat{\mathbf{q}})}{\partial q_{i}} \frac{d \widehat{q}_{i}}{d r_{i}}}^{\text {cost reduction }}
$$

Example: effect of more risk aversion

Differentiating M's equilibrium profit wrt. r_{i} yields

- First term is negative: lower payment from retailer i
- Strengthens the vertical externality

Example: effect of more risk aversion

Differentiating M's equilibrium profit wrt. r_{i} yields

- First term is negative: lower payment from retailer i
- Strengthens the vertical externality
- Second term is positive: higher payments from rivals
- Weakens the contracting externality

Example: effect of more risk aversion

Differentiating M's equilibrium profit wrt. r_{i} yields

- First term is negative: lower payment from retailer i
- Strengthens the vertical externality
- Second term is positive: higher payments from rivals
- Weakens the contracting externality
- Third term is negative: lower production cost
- Rivals' quantities fixed \Longrightarrow no cost increase here

Beneficial insurance provision

$$
\begin{aligned}
& \left.\frac{\partial \pi_{M}}{\partial r_{i}}\right|_{\widehat{\mathbf{q}}}>0 \text { iff } \\
& \\
& -\sum_{k \neq i} \frac{\partial R_{k}}{\partial q_{i}}>\frac{\partial R_{i}}{\partial q_{i}}-\frac{1}{\beta_{i}} \frac{\partial c}{\partial q_{i}}
\end{aligned}
$$

Here, M's profit increases in retailer i 's risk aversion

Beneficial insurance provision

$$
\begin{aligned}
&\left.\frac{\partial \pi_{M}}{\partial r_{i}}\right|_{\widehat{\mathbf{q}}}>0 \text { iff } \\
&-\sum_{k \neq i} \frac{\partial R_{k}}{\partial q_{i}}>\frac{\partial R_{i}}{\partial q_{i}}-\frac{1}{\beta_{i}} \frac{\partial c}{\partial q_{i}}
\end{aligned}
$$

Here, M's profit increases in retailer i 's risk aversion

- Benefit of less opportunism > cost of more insurance
- Likely to hold if retailers compete fiercely in the final market

Beneficial insurance provision

$$
\begin{aligned}
&\left.\frac{\partial \pi_{M}}{\partial r_{i}}\right|_{\widehat{\mathbf{q}}}>0 \text { iff } \\
&-\sum_{k \neq i} \frac{\partial R_{k}}{\partial q_{i}}>\frac{\partial R_{i}}{\partial q_{i}}-\frac{1}{\beta_{i}} \frac{\partial c}{\partial q_{i}}
\end{aligned}
$$

Here, M's profit increases in retailer i 's risk aversion

- Benefit of less opportunism > cost of more insurance
- Likely to hold if retailers compete fiercely in the final market
- Not always a trade-off between insurance and efficiency
- Main difference from Rey-Tirole (1986): secret contracts
- Suggests that M prefers some risk aversion among retailers

Beneficial insurance provision

$$
\begin{aligned}
&\left.\frac{\partial \pi_{M}}{\partial r_{i}}\right|_{\widehat{\mathbf{q}}}>0 \text { iff } \\
&-\sum_{k \neq i} \frac{\partial R_{k}}{\partial q_{i}}>\frac{\partial R_{i}}{\partial q_{i}}-\frac{1}{\beta_{i}} \frac{\partial c}{\partial q_{i}}
\end{aligned}
$$

Here, M's profit increases in retailer i 's risk aversion

- Benefit of less opportunism > cost of more insurance
- Likely to hold if retailers compete fiercely in the final market
- Not always a trade-off between insurance and efficiency
- Main difference from Rey-Tirole (1986): secret contracts
- Suggests that M prefers some risk aversion among retailers
- Similar argument for more uncertainty (higher σ^{2})

Other contracts

So far, second-best solutions as externalities rarely cancel out fully. Can M do better with more advanced contracts?

Other contracts

So far, second-best solutions as externalities rarely cancel out fully. Can M do better with more advanced contracts?

1. State contingent menus can give retailers perfect insurance

- No vertical externality \Longrightarrow the opportunism problem reinforced

Other contracts

So far, second-best solutions as externalities rarely cancel out fully. Can M do better with more advanced contracts?

1. State contingent menus can give retailers perfect insurance

- No vertical externality \Longrightarrow the opportunism problem reinforced

2. Vertical restraints can often resolve the opportunism problem

- RPM (O'Brien-Shaffer 1992), buybacks (Montez, forthcoming) etc.
- Restraints have different insurance properties (Rey-Tirole 1986)
- Effectiveness will depend on modeling specifics, e.g. make-to-stock vs. make-to-order, demand shocks vs. cost shocks etc.
- Main impression: insurance issues can make restraints less effective

Competition policy

General view in this paper

- When insurance matters, opportunism might be a lesser issue with simple contracts and hard to solve with vertical restraints

Competition policy

General view in this paper

- When insurance matters, opportunism might be a lesser issue with simple contracts and hard to solve with vertical restraints
- Less attractive to use restraints for curbing opportunism

Competition policy

General view in this paper

- When insurance matters, opportunism might be a lesser issue with simple contracts and hard to solve with vertical restraints
- Less attractive to use restraints for curbing opportunism
- When observed, restraints may be used for other reasons
- Particularly in volatile markets with many, small and newly established downstream firms

Thank you!

