Opportunism and Insurance in Vertical Contracting

Teis Lunde Lømo

University of Bergen and BECCLE

NHH, 24.04.2015

Research objective

Study an upstream firm's ability to exercise market power when information is scarce both in the intermediate and final market

Illustration: One upstream supplier offers two-part tariff(s) wq + F

Illustration: One upstream supplier offers two-part tariff(s) wq + FInsurance in a bilateral relationship

- Want retailer's marginal revenue = supplier's marginal cost (w = c)
- Not feasible with a risk averse retailer under uncertainty
- Gives a negative vertical externality (w > c)

Illustration: One upstream supplier offers two-part tariff(s) wq + FInsurance in a bilateral relationship

- Want retailer's marginal revenue = supplier's marginal cost (w = c)
- Not feasible with a risk averse retailer under uncertainty
- Gives a negative vertical externality (w > c)

Opportunism in a multilateral relationship

- Want to restrict retail competition $(w_i > c)$
- Not feasible if contract offers are secret among retailers
- Gives a negative contracting externality $(w_i = c)$

Illustration: One upstream supplier offers two-part tariff(s) wq + FInsurance in a bilateral relationship

- Want retailer's marginal revenue = supplier's marginal cost (w = c)
- Not feasible with a risk averse retailer under uncertainty
- Gives a negative vertical externality (w > c)

Opportunism in a multilateral relationship

- Want to restrict retail competition $(w_i > c)$
- Not feasible if contract offers are secret among retailers
- Gives a negative contracting externality $(w_i = c)$

This paper: Externalities can balance each other if faced together

• One manufacturer M and $n \ge 2$ retailers

- One manufacturer M and $n \ge 2$ retailers
- M earns

$$\pi_M = \sum_i T_i - c\left(\mathbf{q}\right)$$

where T_i is a payment from retailer *i* and $\mathbf{q} := (q_1, .., q_n)$

- One manufacturer M and $n \ge 2$ retailers
- M earns

$$\pi_M = \sum_i T_i - c\left(\mathbf{q}\right)$$

where T_i is a payment from retailer i and $\mathbf{q} := (q_1, .., q_n)$

Retailer i earns

$$\pi_{i}=\theta_{i}R_{i}\left(\mathbf{q}\right)-T_{i}$$

where $R_{i}\left(\mathbf{q}
ight):=P\left(\mathbf{q}
ight) imes q_{i}$ and $heta_{i}\sim N\left(\mu,\sigma^{2}
ight)$ is a state variable

- One manufacturer M and $n \ge 2$ retailers
- M earns

$$\pi_M = \sum_i T_i - c\left(\mathbf{q}\right)$$

where T_i is a payment from retailer i and $\mathbf{q} := (q_1, .., q_n)$

Retailer i earns

$$\pi_{i}=\theta_{i}R_{i}\left(\mathbf{q}\right)-T_{i}$$

where $R_{i}\left(\mathbf{q}
ight):=P\left(\mathbf{q}
ight) imes q_{i}$ and $heta_{i}\sim N\left(\mu,\sigma^{2}
ight)$ is a state variable

M is risk neutral, retailer i cares about

$$u_i(\pi_i) := -e^{-r_i(\theta_i R_i(\mathbf{q}) - T_i)}$$

where $r_i \ge 0$ is his level of risk aversion

Contracting game

- Stage 1. M makes a take-it-or-leave-it-offer to each retailer
- Stage 2. Retailers accept/reject after observing only their own offer and make payments accordingly
- Stage 3. Retailers observe θ_i 's and then put out their quantities

Contracting game

- Stage 1. M makes a take-it-or-leave-it-offer to each retailer
- Stage 2. Retailers accept/reject after observing only their own offer and make payments accordingly
- Stage 3. Retailers observe θ_i 's and then put out their quantities
 - Retailers have passive beliefs, look for Perfect Bayesian equilibria

Contracting game

- Stage 1. M makes a take-it-or-leave-it-offer to each retailer
- Stage 2. Retailers accept/reject after observing only their own offer and make payments accordingly
- Stage 3. Retailers observe θ_i 's and then put out their quantities
 - Retailers have passive beliefs, look for Perfect Bayesian equilibria

Incomplete-contracting approach: M cannot offer

- State contingent contracts (monitoring costs, moral hazard etc.)
- Multilateral contracts (hard to enforce and possibly illegal)
- Evidence suggests that supply contracts are often fairly simple

• Insurance term is positive if
$$r_i \sigma^2 > 0$$

- Insurance term is positive if $r_i \sigma^2 > 0$
- ▶ $R_i(.)$ concave + c(.) convex $\implies \hat{q}_i$ lower than 'opportunistic' q_i^*

- Insurance term is positive if $r_i \sigma^2 > 0$
- ▶ $R_i(.)$ concave + c(.) convex $\implies \hat{q}_i$ lower than 'opportunistic' q_i^*
- Outcome is less competitive than in other models
 - ▶ Hart-Tirole (1990); O'Brien-Shaffer (1992); Rey-Vergé (2004) etc.
 - In line with experimental evidence (Martin et al. 2001)

- Insurance term is positive if $r_i \sigma^2 > 0$
- ▶ $R_i(.)$ concave + c(.) convex $\implies \hat{q}_i$ lower than 'opportunistic' q_i^*
- Outcome is less competitive than in other models
 - ▶ Hart-Tirole (1990); O'Brien-Shaffer (1992); Rey-Vergé (2004) etc.
 - In line with experimental evidence (Martin et al. 2001)
- Opportunism may be less of a problem in volatile markets

Less opportunism = more profit?

M is not always better off vis-a-vis the opportunism outcome

 Relative strength of vertical externality and contracting externality decides the effect on his profit from giving insurance

Differentiating M's equilibrium profit wrt. r_i yields

Differentiating M's equilibrium profit wrt. r_i yields

First term is negative: lower payment from retailer i

Strengthens the vertical externality

Differentiating M's equilibrium profit wrt. r_i yields

First term is negative: lower payment from retailer i

- Strengthens the vertical externality
- Second term is positive: higher payments from rivals
 - Weakens the contracting externality

Differentiating M's equilibrium profit wrt. r_i yields

First term is negative: lower payment from retailer i

- Strengthens the vertical externality
- Second term is positive: higher payments from rivals
 - Weakens the contracting externality
- Third term is negative: lower production cost
 - Rivals' quantities fixed \implies no cost increase here

$$\frac{\partial \pi_M}{\partial r_i} \Big|_{\widehat{\mathbf{q}}} > 0 \text{ iff}$$

 $-\sum_{k \neq i} \frac{\partial R_k}{\partial q_i} > \frac{\partial R_i}{\partial q_i} - \frac{1}{\beta_i} \frac{\partial c}{\partial q_i}$

Here, M's profit increases in retailer i's risk aversion

$$\frac{\partial \pi_M}{\partial r_i} \Big|_{\widehat{\mathbf{q}}} > 0 \text{ iff}$$

 $-\sum_{k \neq i} \frac{\partial R_k}{\partial q_i} > \frac{\partial R_i}{\partial q_i} - \frac{1}{\beta_i} \frac{\partial c}{\partial q_i}$

Here, M's profit increases in retailer i's risk aversion

- Benefit of less opportunism > cost of more insurance
- Likely to hold if retailers compete fiercely in the final market

$$\left\| \frac{\partial \pi_M}{\partial r_i} \right\|_{\widehat{\mathbf{q}}} > 0 \text{ iff}$$

 $-\sum_{k \neq i} \frac{\partial R_k}{\partial q_i} > \frac{\partial R_i}{\partial q_i} - \frac{1}{\beta_i} \frac{\partial c}{\partial q_i}$

Here, M's profit increases in retailer i's risk aversion

- Benefit of less opportunism > cost of more insurance
- Likely to hold if retailers compete fiercely in the final market

дс

- Not always a trade-off between insurance and efficiency
 - Main difference from Rey-Tirole (1986): secret contracts
- Suggests that M prefers some risk aversion among retailers

$$\frac{\partial \pi_M}{\partial r_i} \Big|_{\widehat{\mathbf{q}}} > 0 \text{ iff}$$

 $-\sum_{k \neq i} \frac{\partial R_k}{\partial q_i} > \frac{\partial R_i}{\partial q_i} - \frac{1}{\beta_i} \frac{\partial c}{\partial q_i}$

Here, M's profit increases in retailer i's risk aversion

- Benefit of less opportunism > cost of more insurance
- Likely to hold if retailers compete fiercely in the final market
- Not always a trade-off between insurance and efficiency
 - ▶ Main difference from Rey-Tirole (1986): secret contracts
- Suggests that M prefers some risk aversion among retailers
- Similar argument for more uncertainty (higher σ^2)

Other contracts

So far, second-best solutions as externalities rarely cancel out fully. Can M do better with more advanced contracts?

Other contracts

So far, second-best solutions as externalities rarely cancel out fully. Can M do better with more advanced contracts?

- 1. State contingent menus can give retailers perfect insurance
 - \blacktriangleright No vertical externality \implies the opportunism problem reinforced

Other contracts

So far, second-best solutions as externalities rarely cancel out fully. Can M do better with more advanced contracts?

- 1. State contingent menus can give retailers perfect insurance
 - \blacktriangleright No vertical externality \implies the opportunism problem reinforced
- 2. Vertical restraints can often resolve the opportunism problem
 - ▶ RPM (O'Brien-Shaffer 1992), buybacks (Montez, forthcoming) etc.
 - Restraints have different insurance properties (Rey-Tirole 1986)
 - Effectiveness will depend on modeling specifics, e.g. make-to-stock vs. make-to-order, demand shocks vs. cost shocks etc.
 - Main impression: insurance issues can make restraints less effective

Competition policy

General view in this paper

When insurance matters, opportunism might be a lesser issue with simple contracts and hard to solve with vertical restraints

Competition policy

General view in this paper

- When insurance matters, opportunism might be a lesser issue with simple contracts and hard to solve with vertical restraints
- Less attractive to use restraints for curbing opportunism

Competition policy

General view in this paper

- When insurance matters, opportunism might be a lesser issue with simple contracts and hard to solve with vertical restraints
- Less attractive to use restraints for curbing opportunism
- When observed, restraints may be used for other reasons
 - Particularly in volatile markets with many, small and newly established downstream firms

Thank you!